Skip to main content

Advertisement

Log in

Tubulointerstitial injury and the progression of chronic kidney disease

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

In chronic kidney disease (CKD), once injury from any number of disease processes reaches a threshold, there follows an apparently irreversible course toward decline in kidney function. The tubulointerstitium may play a key role in this common progression pathway. Direct injury, high metabolic demands, or stimuli from various other forms of renal dysfunction activate tubular cells. These, in turn, interact with interstitial tissue elements and inflammatory cells, causing further pathologic changes in the renal parenchyma. The tissue response to these changes thus generates a feed-forward loop of kidney injury and progressive loss of function. This article reviews the mechanisms of this negative cycle mediating CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Schnaper HW, Hubchak SC, Runyan CE, Browne JA, Finer G, Liu X, Hayashida T (2010) A conceptual framework for the molecular pathogenesis of progressive kidney disease. Pediatr Nephrol 25:2223–2230

    Article  PubMed  Google Scholar 

  2. Kriz W, LeHir M (2005) Pathways to nephron loss starting from glomerular diseases—insights from animal models. Kidney Int 67:404–419

    Article  PubMed  Google Scholar 

  3. Schainuck LI, Striker GE, Cutler RE, Benditt EP (1970) Structural-functional correlations in renal diseases. Part II: the correlations. Hum Pathol 1:631–641

    Article  PubMed  CAS  Google Scholar 

  4. Bohle A, Mackensen-Haen S, VonGise, Grund KE, Wehrmann M, Batz C, Bogen Schutz O, Schmitt H, Nagy J, Muller C (1990) The consequences of tubule-interstitial changes for renal function in glomerulopathies. A morphometric and cytological analysis. Pathol Res Pract 186:135–144

    Article  PubMed  CAS  Google Scholar 

  5. Rodriguez-Iturbe B, Garcia Garcia G (2010) The role of tubulointerstitial inflammation in the progression of chronic renal failure. Nephron Clin Pract 116:c81–c88

    Article  PubMed  CAS  Google Scholar 

  6. Fogo A, Hawkins EP, Berry PL, Glick AD, Chiang ML, MacDonell RC Jr, Ichikawa I (1990) Glomerular hypertrophy in minimal change disease predicts subsequent progression to focal glomerular sclerosis. Kidney Int 38:115–123

    Article  PubMed  CAS  Google Scholar 

  7. LeHir M, Besse-Eschmann V (2003) A novel mechanism of nephron loss in a murine model of crescentic glomerulonephritis. Kidney Int 63:591–599

    Article  Google Scholar 

  8. Nangaku M (2004) Mechanisms of tubulointerstitial injury in the kidney: final common pathways to end-stage renal failure. Intern Med 43:9–17

    Article  PubMed  CAS  Google Scholar 

  9. Remuzzi G (1999) Nephropathic nature of proteinuria. Curr Opin Nephrol Hypertens 8:655–633

    Article  PubMed  CAS  Google Scholar 

  10. Nielsen R, Christensen EI (2010) Proteinuria and events beyond the slit. Pediatr Nephrol 25:813–822

    Article  PubMed  Google Scholar 

  11. Biemesderfer D (2006) Regulated intramembrane proteolysis of megalin: linking urinary protein and gene regulation in proximal tubule? Kidney Int 69:1717–1721

    Article  PubMed  CAS  Google Scholar 

  12. Amsellem S, Gburek J, Hamard G, Nielsen R, Willnow TE, Devuyst O, Nexo E, Verroust PJ, Christensen EI, Kozyraki R (2010) Cubilin is essential for albumin reabsorption in the renal proximal tubule. J Am Soc Nephrol 21:1859–1867

    Article  PubMed  CAS  Google Scholar 

  13. Shimizu H, Maruyama S, Yuzawa Y, Kato T, Miki Y, Suzuki S, Sato W, Morita Y, Maruyama H, Egashira K, Matsuo S (2003) Anti-monocyte chemoattractant protein-1 gene therapy attenuates renal injury induced by protein-overload proteinuria. J Am Soc Nephrol 14:1496–1505

    Article  PubMed  CAS  Google Scholar 

  14. Anders H-J, Ninichuk V, Schlondorff D (2006) Progression of kidney disease: blocking leukocyte recruitment with chemokine receptor CCR1 antagonist. Kidney Int 69:29–32

    Article  PubMed  Google Scholar 

  15. Kassiri Z, Oudit GY, Kandalam V, Awad A, Wang X, Ziou X, Maeda N, Herzenberg AM, Scholey JW (2009) Loss of TIMP3 enhances interstitial nephritis and fibrosis. J Am Soc Nephrol 20:1223–1235

    Article  PubMed  CAS  Google Scholar 

  16. Whaley-Connell AT, Morris EM, Rehmer N, Yaghoubian JC, Wei Y, Hayden MR, Habib J, Stump CS, Sowers JR (2007) Albumin activation of NAD(P)H oxidase activity is mediated via Rac1 in proximal tubule cells. Am J Nephrol 27:15–23

    Article  PubMed  CAS  Google Scholar 

  17. Cooper MA, Buddington B, Miller NL, Alfrey AC (1995) Urinary iron speciation in nephrotic syndrome. Am J Kidney Dis 25:314–319

    Article  PubMed  CAS  Google Scholar 

  18. Kamijo A, Kimura K, Sugaya T, Yamanouchi M, Hase H, Kaneko T, Hirata Y, Goto A, Fujita T, Omata M (2002) Urinary free fatty acids bound to albumin aggravate tubulointerstitial damage. Kidney Int 62:1628–1637

    Article  PubMed  CAS  Google Scholar 

  19. Van Timmeren MM, Bakker SJL, Stegeman CA, Gans RO, van Goor H (2005) Addition of oleic acid to delipidated bovine serum albumin aggravates renal damage in experimental protein-overload nephrosis. Nephrol Dial Transplant 20:2349–2357

    Article  PubMed  Google Scholar 

  20. Arici M, Chana R, Lewington A, Brown J, Brunskill NJ (2003) Stimulation of proximal tubular cell apoptosis by albumin-bound fatty acids mediated by peroxisome proliferator activated receptor-γ. J Am Soc Nephrol 14:17–27

    Article  PubMed  CAS  Google Scholar 

  21. Souma T, Abe M, Moriguchi T, Takai J, Yanagisawa-Miyazawa N, Shibata E, Akiyama Y, Toyohara T, Suzuki T, Tanemoto M, Abe T, Sato H, Yamamoto M, Ito S (2011) Luminal alkalinization attenuates proteinuria-induced oxidative damage in proximal tubular cells. J Am Soc Nephrol 22:635–648

    Article  PubMed  CAS  Google Scholar 

  22. Nangaku M, Pippin J, Couser W (2002) C6 mediates chronic progression of tubulointerstitial damage in rats with remnant kidneys. J Am Soc Nephrol 13:928–936

    PubMed  CAS  Google Scholar 

  23. He C, Imai M, Song H, Quigg RJ, Tomlinson S (2005) Complement inhibitors targeted to the proximal tubule prevent injury in experimental nephritic syndrome and demonstrate a key role for C5b-9. J Immunol 174:5750–5757

    PubMed  CAS  Google Scholar 

  24. Zeisberg M, Duffield JS (2010) Resolved: EMT produces fibroblasts in the kidney. J Am Soc Nephrol 21:1247–1253

    Article  PubMed  Google Scholar 

  25. Lin SL, Kisseleva T, Brenner DA, Duffield JS (2008) Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol 173:1617–1627

    Article  PubMed  CAS  Google Scholar 

  26. Basile DP, Friedrich JL, Spahic J, Knipe N, Mang H, Leonard EC, Changizi-Ashtiyani S, Bacallao RL, Molitoris BA, Sutton TA (2011) Impaired endothelial proliferation and mesenchymal transition contribute to vascular rarefaction following acute kidney injury. Am J Physiol Renal Physiol 300:F721–F733

    Article  PubMed  CAS  Google Scholar 

  27. Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R (2008) Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol 19:2282–2287

    Article  PubMed  Google Scholar 

  28. Liu Y (2004) Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 15:1–12

    Article  PubMed  CAS  Google Scholar 

  29. García-Sánchez O, López-Hernández FJ, López-Novoa JM (2010) An integrative view on the role of TGF-β in the progressive tubular deletion associated with chronic kidney disease. Kidney Int 77:950–955

    Article  PubMed  Google Scholar 

  30. Phanish MK, Winn SK, Dockrell ME (2010) Connective tissue growth factor-(CTGF, CCN2)—a marker, mediator, and therapeutic target for renal fibrosis. Nephron Exp Nephrol 114:e83–e92

    Article  PubMed  CAS  Google Scholar 

  31. Eddy AA, Fogo AB (2006) Plasminogen activator inhibitor-1 in chronic kidney disease: evidence and mechanisms of action. J Am Soc Nephrol 17:2999–3012

    Article  PubMed  CAS  Google Scholar 

  32. Ricardo SD, van Goor H, Eddy AA (2008) Macrophage diversity in renal injury and repair. J Clin Invest 118:3522–3530

    Article  PubMed  CAS  Google Scholar 

  33. Lange-Sperandio B, Fulda S, Vandewalle A, Chevalier RL (2003) Macrophages induce apoptosis in proximal tubule cells. Pediatr Nephrol 18:335–341

    PubMed  Google Scholar 

  34. Nangaku M (2006) Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol 17:17–75

    Article  PubMed  CAS  Google Scholar 

  35. Okusa MD, Chertow GM, Portilla D (2009) The nexus of acute kidney injury, chronic kidney disease, and World Kidney Day 2009. Clin J Am Soc Nephrol 4:520–522

    Article  PubMed  Google Scholar 

  36. Fine LG, Norman JT (2008) Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics. Kidney Int 74:867–872

    Article  PubMed  CAS  Google Scholar 

  37. Xu H, Zeng L, Peng H, Chen S, Jones J, Chew TL, Sadeghi MM, Kanwar YS, Danesh FR (2006) HMG-CoA reductase inhibitor simvastatin mitigates VEGF-induced “inside-out” signaling to extracellular matrix by preventing RhoA activation. Am J Physiol Renal Physiol 291:F995–F1004

    Article  PubMed  CAS  Google Scholar 

  38. Wang Z, Tang L, Zhu Q, Yi F, Zhang F, Li PL, Li N (2011) Hypoxia-inducible factor-1α contributes to the profibrotic action of angiotensin II in renal medullary interstitial cells. Kidney Int 79:300–310

    Article  PubMed  CAS  Google Scholar 

  39. Haase VH (2010) The sweet side of HIF. Kidney Int 78:10–13

    Article  PubMed  CAS  Google Scholar 

  40. Basu RK, Hubchak S, Hayashida T, Runyan CE, Schumacker PT, Schnaper HW (2011) Interdependence of HIF-1α and TGF-β/Smad3 signaling in normoxic and hypoxic renal epithelial cell collagen expression. Am J Physiol Renal Physiol 300:F898–F905

    Article  PubMed  CAS  Google Scholar 

  41. Fogo AB (2007) Mechanisms of progression of chronic kidney disease. Pediatr Nephrol 22:2011–2022

    Article  PubMed  Google Scholar 

  42. Brown NJ (2005) Aldosterone and end-organ damage. Curr Opin Nephrol Hypertens 14:235–241

    Article  PubMed  CAS  Google Scholar 

  43. Queisser N, Oteiza PI, Stopper H, Oli RG, Schupp N (2011) Aldosterone induces oxidative stress, oxidative DNA damage and NF-κB-activation in kidney tubule cells. Mol Carcinog 50:123–135

    Article  PubMed  CAS  Google Scholar 

  44. Briet M, Schiffrin EL (2010) Aldosterone: effects on the kidney and cardiovascular system. Nat Rev Nephrol 6:261–273

    Article  PubMed  CAS  Google Scholar 

  45. Neuhofer W, Pittrow D (2006) Role of endothelin and endothelin receptor antagonists in renal disease. Eur J Clin Invest Suppl 3:78–88

    Article  Google Scholar 

Download references

Acknowledgments

Supported in part by grants R01 DK049362 and R01 DK075663 from the National Institute of Diabetes, Digestive and Kidney Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavita S. Hodgkins.

Additional information

Answers

1. (B)

2. (C)

3. (B)

4. (D)

5. (A)

Questions (Answers provided following the reference list)

Questions (Answers provided following the reference list)

  1. 1.

    Histologic changes shown to correspond to worsening GFR in CKD include all of the following EXCEPT:

    1. A.

      Decreased number of peritubular capillaries

    2. B.

      Severity of glomerular injury

    3. C.

      Intensity of interstitial inflammation

    4. D.

      Increased interstitial volume and fibrosis

  2. 2.

    Proteinuria and the presence of other molecules in the filtrate affect tubulointerstitial cells by which of the following mechanisms:

    1. A.

      Proteinuria inhibits activity of the membrane attack complex, or C5b-9

    2. B.

      Albumin, acting through its receptor, megalin, down-regulates NF-κB

    3. C.

      Free fatty acids activate PPAR leading to tubular cell apoptosis

    4. D.

      Generation of ROS is decreased by exposure to iron in the filtrate

  3. 3.

    Cells hypothesized to be the source of myofibroblasts responsible for unbalanced production of ECM include all of the following EXCEPT:

    1. A.

      Tubular epithelial cells

    2. B.

      Podocytes

    3. C.

      Bone marrow precursor cells

    4. D.

      Vascular pericytes

  4. 4.

    Tissue responses to tubulointerstitial injury include which of the following:

    1. A.

      Renal parenchymal blood flow is increased to maintain unchanged oxygen tension

    2. B.

      Inflammatory cells recruited to the tubulointerstitial milieu are inactivated by high urea concentrations

    3. C.

      Renin is inactivated, resulting in hypoxia and oxidative stress

    4. D.

      EMT is induced in part by the actions of TGF-β, CTGF, and PAI-1

  5. 5.

    Tubular injury affects progression of chronic kidney disease by which of the following pathways:

    1. A.

      Hypoxia is worsened by capillary injury and limitation of oxygen diffusion

    2. B.

      Tubular dropout causes a decrease in single-nephron blood flow of remaining glomeruli

    3. C.

      Autoregulation of glomerular blood flow is preserved

    4. D.

      Atrophy of tubules results in increased filtrate delivery to the macula densa, increasing GFR through tubuloglomerular feedback

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodgkins, K.S., Schnaper, H.W. Tubulointerstitial injury and the progression of chronic kidney disease. Pediatr Nephrol 27, 901–909 (2012). https://doi.org/10.1007/s00467-011-1992-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-011-1992-9

Keywords

Navigation