PT - JOURNAL ARTICLE AU - Robert D Daniels AU - Stephen Bertke AU - Kathleen M Waters AU - Mary K Schubauer-Berigan TI - Risk of leukaemia mortality from exposure to ionising radiation in US nuclear workers: a pooled case-control study AID - 10.1136/oemed-2012-100906 DP - 2013 Jan 01 TA - Occupational and Environmental Medicine PG - 41--48 VI - 70 IP - 1 4099 - http://oem.bmj.com/content/70/1/41.short 4100 - http://oem.bmj.com/content/70/1/41.full SO - Occup Environ Med2013 Jan 01; 70 AB - Objective To follow-up on earlier studies of the leukaemogenicity of occupational ionising radiation exposure. Methods We conducted a nested case-control analysis of leukaemia mortality in a pooled cohort of US nuclear workers followed through 2005. Each case was matched to four controls on attained age. Exposures were estimated from available records. General relative risk models were used to estimate the excess relative risk (ERR) of leukaemia, excluding chronic lymphocytic (CLL), acute myeloid leukaemia, chronic myeloid leukaemia and CLL while controlling for potential confounders. Preferred exposure lags and time-windows of risks were calculated using joint maximum likelihood. Dose-response was also examined using linear, linear-quadratic, categorical and restricted cubic spline models. Results There were 369 leukaemia deaths in 105 245 US nuclear workers. The adjusted ERR for non-CLL leukaemia was 0.09 (95% CI −0.17 to 0.65) per 100 mGy. Elevated non-CLL risks were observed from exposures occurring 6–14 years prior to attained age of cases (ERR per 100 mGy=1.9; 95% CI <0 to 8.0). Lagged models indicated non-linearity of risk at very low (<10 mGy) and high (>100 mGy) doses, which contributed to the imprecision of results in linear models. Similar risk attenuation was not evident in time-windows-based models. Conclusions Risk estimates were in reasonable agreement with previous estimates, with the temporality of non-CLL leukaemia risk as a dominant factor in dose-response analyses. Future research should focus on methods that improve evaluations of the dose-response, particularly in the low-dose range.