Nocturnal exposure to intermittent 60 Hz magnetic fields alters human cardiac rhythm

Bioelectromagnetics. 1998;19(2):98-106.

Abstract

Heart rate variability (HRV) results from the action of neuronal and cardiovascular reflexes, including those involved in the control of temperature, blood pressure and respiration. Quantitative spectral analyses of alterations in HRV using the digital Fourier transform technique provide useful in vivo indicators of beat-to-beat variations in sympathetic and parasympathetic nerve activity. Recently, decreases in HRV have been shown to have clinical value in the prediction of cardiovascular morbidity and mortality. While previous studies have shown that exposure to power-frequency electric and magnetic fields alters mean heart rate, the studies reported here are the first to examine effects of exposure on HRV. This report describes three double-blind studies involving a total of 77 human volunteers. In the first two studies, nocturnal exposure to an intermittent, circularly polarized magnetic field at 200 mG significantly reduced HRV in the spectral band associated with temperature and blood pressure control mechanisms (P = 0.035 and P = 0.02), and increased variability in the spectral band associated with respiration (P = 0.06 and P = 0.008). In the third study the field was presented continuously rather than intermittently, and no significant effects on HRV were found. The changes seen as a function of intermittent magnetic field exposure are similar, but not identical, to those reported as predictive of cardiovascular morbidity and mortality. Furthermore, the changes resemble those reported during stage II sleep. Further research will be required to determine whether exposure to magnetic fields alters stage II sleep and to define further the anatomical structures where field-related interactions between magnetic fields and human physiology should be sought.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adolescent
  • Adult
  • Circadian Rhythm / radiation effects*
  • Double-Blind Method
  • Electrocardiography
  • Electromagnetic Fields / adverse effects*
  • Fourier Analysis
  • Heart Rate / radiation effects*
  • Humans
  • Male
  • Nonlinear Dynamics
  • Sleep / radiation effects