A comparison of occupational and non-occupational exposure to diesel exhausts and its consequences for studying health effects

Diesel exhausts are common both in occupational and non-occupational settings. They are considered as a cause of lung cancer, and International Agency for Research on Cancer (IARC) recently upgraded the evidence from probable to sufficient (http://www.iarc.fr). However, the opinions about the health effects are not consistent. A recent review concluded that the published studies lack consistency.\(^1\) A pooled analysis of case-control studies and a study of miners were interpreted as consistent with an increased risk but questioned by others.\(^2,3\) Some of the studies of lung cancer risk from diesel exhaust are evaluating the risk in drivers of vehicles like buses, trains or heavy equipment operators.\(^1,2,4\)

The possibility to find an association in epidemiological study depends on the contrast in exposure between groups. We used nitrous dioxide as a marker of diesel exhausts and estimated exposure during working time (1700 h/year), time in city for commuting and so on (700 h/year) and to the average concentration in the city (‘city background’; 6360 h/year). City concentrations were from a Swedish data base (http://www.ivl.se).

Iron miners in Kiruna had an average concentration of 280 \(\mu g/m^3\) during work in the mine. The average concentration in the city streets was 15 \(\mu g/m^3\) and the city background 8 \(\mu g/m^3\). Thus, the cumulative exposure was 5.4×10\(^2\) h×\(\mu g/m^3\) (1700×280 +700×15+6360×8=557 380) of which the occupational exposure constituted 89%. The concentration for tunnel workers in the Stockholm area was reported to 350 \(\mu g/m^3\),\(^3,6\) the concentrations for a busy street 38 (average of a street 2005–2010) and city background 18 \(\mu g/m^3\) (average of two sites 2010). Thus, the occupational exposure constituted 81% for the tunnel workers assuming that they worked all their working time in the tunnel. There have been some measurements on bus, truck and taxi drivers in the Stockholm area, indicating an average concentration of 53 \(\mu g/m^3\),\(^3,6\) indicating an occupational contribution of 29% in drivers (figure 1).

These are the occupational contributions of diesel exhausts during a year in which the worker is occupationally active. If the life-time cumulative exposure would be estimated the occupational contribution would decrease considerably. The recent US study of miners found an average concentration of 128 \(\mu g/m^3\) elementary carbon in underground workers while the concentration for surface worker was only 1.7 \(\mu g/m^3\).\(^3,3\) However, if the lung cancer risk at the age of 70 is proportional to the life-time cumulative risk, the occupational contribution would be just about 50% for a worker who had worked 5 years underground in the mine and 70% if he had worked underground for 10 years.

We conclude that occupational studies of the risk with diesel exhausts would considerably underestimate the risk if they do not consider the non-occupational exposure. This especially concerns studies of modestly exposed groups like drivers in non-confined spaces.

Bengt Järvholm, Christina Reuterwall
Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden

Correspondence to Professor Bengt Järvholm,
Department of Public Health and Clinical Medicine,
Umeå University, Umeå SE 901 87, Sweden;
Bengt.jarvholm@envmed.umu.se

Figure 1 Contribution of cumulative exposure to NO\(_2\) (hours×\(\mu g/m^3\)) during a year from different sources.
Acknowledgements This work was supported by funding from the Swedish Work Environment Authority.

Contributors Both authors participated in the design and writing of the study. BJ was responsible for data collection.

Competing interests None.

Provenance and peer review Not commissioned; internally peer reviewed.

REFERENCES
A comparison of occupational and non-occupational exposure to diesel exhausts and its consequences for studying health effects

Bengt Järvholm and Christina Reuterwall

Occup Environ Med 2012 69: 851-852 originally published online September 21, 2012
doi: 10.1136/oemed-2012-101134

Updated information and services can be found at:
http://oem.bmj.com/content/69/11/851.2

These include:

References

This article cites 6 articles, 4 of which you can access for free at:
http://oem.bmj.com/content/69/11/851.2#BIBL

Open Access

This is an open-access article distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non commercial and is otherwise in compliance with the license. See: http://creativecommons.org/licenses/by-nc/3.0/ and http://creativecommons.org/licenses/by-nc/3.0/legalcode

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections

- Open access (123)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/