exposed controls) showed significant elevated risks ranging from 1.16 to 1.40. SYN-JEM did not perform better than the ordinal DOM-JEM which provided similar ORs. **Conclusions** We found a positive exposure-response association between occupational exposure to respirable quartz and lung cancer in a large pooled community-based casecontrol study. A semi-quantitative approach showed similar results as the quantitative exposure assessment approach except that with the latter risk can be expressed in terms of mg/m3 quartz years, which would facilitate quantitative risk-assessment. ## EXPOSURE-RESPONSE RELATION FOR OCCUPATIONAL EXPOSURE TO RESPIRABLE QUARTZ AND LUNG CANCER RISK: PERFORMANCE OF A QUANTITATIVE VS A SEMI-QUANTITATIVE JOB-EXPOSURE MATRIX Susan Peters,¹ Roel Vermeulen,¹ Lutzen Portengen,¹ Ann Olsson,² Heinz-Erich Wichmann,³ Irene Brüske,³ Dario Consonni,⁴ Andrea Cattaneo,⁴ Pier Alberto Bertazzi, ⁴ Jack Siemiatycki, ⁵ Lorenzo Richiardi, ⁶ Dario Mirabelli, ⁶ Lorenzo Simonato, ⁷ Per Gustavsson,⁸ Karl-Heinz Jöckel,⁹ Wolfgang Ahrens,¹⁰ Hermann Pohlabeln,¹⁰ Paolo Boffetta,¹¹ Paul Brennan,² Francesco Forastiere,¹² Isabelle Stücker,¹³ Simone Benhamou, 14 Bas Bueno-de-Mesquita, 15 Nils Plato, 8 Jérôme Lavoué, 5 Dirk Dahmann, 16 Joelle Fevotte, 17 Benjamin Kendzia, 18 Raymond Vincent, 19 Barbara Savary,19 Domenico Cavallo,20 Beate Pesch,18 Thomas Brüning,18 Kurt Straif,2 Hans Kromhout¹ ¹IRAS, Utrecht, The Netherlands; ²IARC, Lyon, France; ³Institut für Epidemiologie, Neuherberg, Germany; ⁴University of Milan, Milan, Italy; ⁵University of Montreal, Montreal, Canada; ⁶University of Turin, Turin, Italy; ⁷University of Padova, Padova, Italy; 8Karolinska Institutet, Stockholm, Sweden; 9University of Duisburg-Essen, Duisburg-Essen, Germany; ¹⁰Bremen Institute for Prevention Research and Social Medicine, Bremen, Germany; 11The Tisch Cancer Institute, New York, France; ¹²Department of Epidemiology, Rome, Italy; ¹³INSERM, Villejuif, France; ¹⁴INSERM, Paris, France; 15RIVM, Bilthoven, The Netherlands; 16IGF-BG, Bochum, Germany; ¹⁷InVS, St Maurice, France; ¹⁸IPA, Bochum, Germany; ¹⁹INRS, Nancy, France; ²⁰Università degli Studi dell'Insubria, Como, Italy 10.1136/oemed-2011-100382.154 **Objectives** In order to estimate the exposure-response relation of respirable quartz and lung cancer risk, we developed a quantitative time/job/region specific job-exposure matrix (JEM) based on statistical modelling of historical exposure data. We compared the performance of this quantitative JEM (SYN-JEM) with an already available semi-quantitative general population JEM (DOM-JEM) within a study of pooled community-based lung cancer case-control studies (SYNERGY). Methods Detailed lifetime occupational and smoking history was available for 13 259 cases and 16 232 controls from 11 case-control studies from 12 European countries and Canada. Occupational histories were linked with SYN-JEM and DOM-JEM to derive estimates of cumulative exposure. ORs for lung cancer were estimated using unconditional logistic regression adjusted for age, gender, study, cigarette pack-years, time-since-quitting smoking, and ever occupational exposure to five other known lung carcinogens. **Results** Exposure to respirable quartz was associated with a monotonic increase in risk of lung cancer. Cumulative exposure estimates based on the quantitative SYN-JEM ranged from 0.005 to 104 mg/m3-years. Quartiles of cumulative exposure (categorised using the exposure distribution among