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ABSTRACT

OMICS technologies are relatively new biomarker
discovery tools that can be applied to study large sets of
biological molecules. Their application in human
observational studies (HOS) has become feasible in
recent years due to a spectacular increase in the
sensitivity, resolution and throughput of OMICS-based
assays. Although, the number of OMICS techniques is
ever expanding, the five most developed OMICS
technologies are genotyping, transcriptomics,
epigenomics, proteomics and metabolomics. These
techniques have been applied in HOS to various extents.
However, their application in occupational environmental
health (OEH) research has been limited. Here, we will
discuss the opportunities these new techniques provide
for OEH research. In addition we will address difficulties
and limitations to the interpretation of the data that is
generated by OMICS technologies. To illustrate the
current status of the application of OMICS in OEH
research, we will provide examples of studies that used
OMICS technologies to investigate human health effects
of two well-known toxicants, benzene and arsenic.

In the biological sciences the suffix -omics is used to
refer to the study of large sets of biological mole-
cules.! The idea that the field of molecular biology
needed to move from studying isolated biological
molecules towards a broad analysis of large sets of
biological molecules was underscored with the
completion of the human genome project (HGP) in
2001.2 3 The HGP demonstrated that a relatively
limited number of genes could be identified in the
human genome, which substantiated the theory
that complex biological processes were regulated on
other levels than DNA sequence alone. This real-
isation triggered the rapid development of several
fields in molecular biology that together are
described with the term “OMICS”. The OMICS
field ranges from genomics (focused on the genome)
to proteomics (focused on large sets of proteins, the
proteome) and metabolomics (focused on large sets
of small molecules, the metabolome). We divide the
field of genomics into genotyping (focused on the
genome sequence), transcriptomics (focused on
genomic expression) and epigenomics (focused on
epigenetic regulation of genome expression). An
overview of the different OMICS fields that will be
discussed in this paper is presented in table 1. In this
review we define the field of occupational and
environmental health (OEH) research as the study
of interactions between the following domains:
environment (the exposome),* individual (genetic)

susceptibility (the (epi)genome), and biological
outcomes (the responsome)’ (figure 1). In this
context, biological outcomes can be defined as
clinical diseases as well as relevant (preclinical)
intermediate endpoints. In theory, OMICS tech-
nologies have a large potential value for OEH
research because the environment is known to
influence many of the described processes and
therefore OMICS technologies are likely to provide
valuable information especially where the three
domains overlap. Although the field of OMICS is
ever expanding (eg, see http://omics.org), currently
five different OMICS fields are well established:
genotyping, gene expression profiling, epigenomics,
proteomics, and metabolomics. In this paper, we
will address the spectacular increase in sensitivity,
resolution and throughput of OMICS-based tech-
niques in recent years, and we will discuss the
difficulties regarding the interpretation of data
generated by these techniques. To illustrate the
current status of the application of OMICS in OEH
research and the progress that has been made in
recent years, we will provide examples of studies
that have used OMICS technologies to investigate
human health effects of two well-known environ-
mental/occupational  toxicants, benzene and
arsenic.

OVERVIEW OF OMICS TECHNOLOGIES

Genomics

We divide the field of genomics into genotyping,
transcriptomics, and epigenomics.

Genotyping

Genotyping is focused on the identification of the
physiological function of genes and the elucidation
of the role of specific genes in disease susceptibility.®
The HGP has provided insight in the number of
genes and their location in the human genome.? 7
This knowledge in combination with major tech-
nological improvements resulted in the develop-
ment of assays that are able to assess variability in
the DNA sequence of many thousands of genes in
a single experiment. This development has opened
the possibility to study the combined effect of
variability in multiple genes on the development of
complex diseases. While several types of genetic
variation exist (eg, insertions and deletions of
nucleotide base pairs and copy number variations
(CNVs)), single nucleotide polymorphisms (SNPs)
are the most commonly investigated® At this
moment over nine million detected SNPs are avail-
able in public databases.® ? Because SNPs are highly
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Table 1 Overview of the different OMICS technologies
Influence by
Technology Molecules of interest Definition Temporal variance disease status
Genotyping DNA Assessment of variability in DNA sequence in the None No
genome
Epigenomics Epigenetic modifications of DNA Assessment of factors that regulate gene expression Low/moderate Probable
without changing DNA sequence of the genome
Gene expression profiling RNA Assessment of variability in composition and High Yes
abundance of the transcriptome
Proteomics Proteins Assessment of variability in composition and High Yes
abundance of the proteome
Metabolomics Small molecules Assessment of variability in composition and High Yes

abundance of the metabolome

abundant in the human genome, they are commonly used as
markers for genetic variation in disease—gene association
studies.’” Due to limited genetic variation and haplotype struc-
ture and a high level of linkage disequilibrium within small
regions of the genome, a subset of informative SNPs, called tag
SNPs, can be genotyped as proxies for haplotype blocks to iden-
tify regional associations that influence disease or phenotypes of
interest.'! Fine mapping (eg, sequencing) can further narrow the
associated region in the search for the true causal variant(s).
However, functional studies are needed to test whether associ-
ated SNPs alter the structure or function of DNA, RNA or
proteins and influence phenotypes. Among others, functional
SNPs might alter peptide sequences, transcription factor binding
sites and exonic splicing enhancer/suppressor sites.

The first SNP-based studies focused on =1 SNPs per gene in
a limited set of candidate genes. However, since the introduction
of array-based genotyping techniques, allowing the simultaneous
assessment of up to one million SNPs in a single assay, it has
become possible to cover, with varying resolution, the entire
genome in what are now commonly referred to as genome-wide
association studies (GWAS). These GWAS have uncovered, and
will continue to uncover, interesting and previously unknown
polymorphic variants that are associated with a variety of
chronic diseases. The effect sizes of these findings have in general
been small (OR 1.2—1.5) fuelling debates on positive interactions
between one or more common variants and the environment.'?

Assessment of the environment Assessment of biological outcomes

Exposome Responsome

(Epi)genome

Assessment of individual susceptibility

Figure 1 OMICS within the domain of occupational and environmental
health. Genotyping operates completely within the domain of genomics.
The other OMICS technologies operate in the intersection between the
exposome (assessment of the environment), the responsome (assess-
ment of health effects) and the (epi)genome (assessment of individual
genetic susceptibility).
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Yet, identifying these gene—environment interactions will be
difficult in ongoing GWAS given the low prevalence of exposures
and/or the poor characterisation of environmental exposures in
these large, often multicentre/country studies. As such, OEH
research can play an important role in the identification of
gene—environment interactions as the exposure is more preva-
lent and assessed with greater accuracy than in population- or
hospital-based case-control studies that have provided most
GWAS to date. Of course, sample sizes will likely be much
smaller in these studies limiting the statistical power, and
therefore the number of SNPs that can be tested simultaneously.
Until recently most OEH studies on gene—environment have
been focused on candidate genes, where the success depends on
previous knowledge and ability for selection of candidate genes.™®
Application of GWAS has been limited except in a study on
exposure to environmental tobacco smoke.'* The application of
GWAS to OEH studies will, however, result in some computa-
tional challenges as the number of genes that have a possible
interaction with the exposure are large. Recently, several papers
have proposed new statistical approaches for gene—environ-
ment-wide interaction studies which minimise the type 1 error
(ie, false positives) while gaining efficiency and power.”~"
Although they occur less frequently than SNPs CNVs play an
important role in genetic variation.'® CNVs are caused by
genomic structural variations such as insertions, deletions, and
duplications and have been defined as “segments of DNA that are
1 kb or larger and present at variable copy number in comparison
with a reference genome”.!” CNVs located in gene promoter
regions can influence gene expression, and might influence the
development of complex disease traits where gene dosage is
altered but not abolished.'” CNVs proximal to genes but not in
promoter sequences could perturb the “histone code” and also
influence gene expression. Further, CNVs located in exons could
result in mis-spliced mRNA with detrimental effects on protein
expression. Techniques that have been used to assess CNVs in the
genome include comparative genomic hybridisation, a technique
that compares labelled DNA from individuals in a study popu-
lation with differently labelled reference genomic DNA,* and
SNP-based platforms that use allele intensity ratios to make
inferences about CNVs.'” CNV has been frequently assessed in
studies that investigated the effects of the glutathione S-transferase
M1 (GSTN1) gene on environment—cancer associations.?! 2 To
date most studies assessed the effect of having the null genotype
(deletion) of GSTAM1 gene versus having at least one copy of the
gene. Recent studies were also able to assess gene dosage effects
(ie, does having two copies of the GSTA1 gene result in stronger
associations with cancer than having one copy?).2® %

Transcriptomics
The abundance of specific mRNA transcripts in a biological
sample is a reflection of the expression levels of the
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corresponding genes.”> Gene expression profiling is the identifi-
cation and characterisation of the mixture of mRNA that is
present in a specific sample. An important application of gene
expression profiling is to associate differences in mRNA mixtures
originating from different groups of individuals to phenotypic
differences between the groups.?® In contrast to genotyping, gene
expression profiling allows characterisation of the level of gene
expression. Both the presence of specific forms of mRNA and the
levels in which these forms occur are parameters that provide
information on gene expression.”” The transcriptome in contrast
to the genome is highly variable over time, between cell types
and will change in response to environmental changes (table 1). A
gene expression profile provides a quantitative overview of the
mRNA transcripts that were present in a sample at the time of
collection. Therefore, gene expression profiling can be used to
determine which genes are differently expressed as a result of
changes in environmental conditions. A typical gene expression
profiling study includes a group of individuals with similar
phenotype (eg, exposure level, disease status) and compares the
gene expression profile of this group to the profile of a reference
group matched on selected factors such as age and sex to the
group of interest. Studies of this type usually report a set of genes
that are differently expressed between the groups.

Epigenomics

The focus of epigenomics is to study epigenetic processes on
a large (ultimately genome-wide) scale.”® ?° Epigenetic processes
are mechanisms other than changes in DNA sequence that are
involved in local activity states such as gene transcription and
gene silencing.** 32 Although the range of epigenetic mecha-
nisms that are discovered is expanding, epigenomics is mainly
based on two most comprehensively studied mechanisms, DNA
methylation and histone modification.?® **~3’ However, in recent
years RNA interference of gene expression by non-coding RNAs
such as microRNA and siRNA has acquired considerable atten-
tion.? 0 ! Changes in DNA methylation, histone modification
and RNA interference are often associated and it is believed that
interaction exists between these epigenetic processes.”* Here, the
focus will be on DNA methylation and histone modification.
DNA methylation is the addition of a methyl group to cytosine
in a CpG dinucleotide. A distinction is made between global
methylation and CpG island-specific methylation. About 70% of
the CpG dinucleotides in the human genome are methylated.
However, CpG dinucleotides in CpG islands are predominantly
unmethylated.*® Hypermethylation of CpG islands located in
promoter regions of genes is related to gene silencing. Under
normal conditions gene silencing is related to phenomena such as
genomic imprinting, x-chromosome inactivation and tissue-
specific gene expression.?® % Altered gene silencing plays a causal
role in human disease.” 3% 38 42 The effect of hypomethylation
of the genome outside CpG islands is less well understood but
may be involved in chromosomal instability.*> *° Histone
proteins are involved in the structural packaging of DNA in the
chromatin complex. Post-translational histone modifications
such as acetylation and methylation are believed to regulate
chromatin structure and therefore gene expression.** 3

Proteomics

In general the function of cells can be described by the proteins
that are present in the intra- and intercellular space and the
abundance of these proteins.*® Although all proteins are based on
mRNA precursors, post-translational modifications (PTMs) and
environmental interactions make it impossible to predict abun-
dance of specific proteins based on gene expression analysis alone.
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The proteome consists of all proteins present in specific cell types
or tissue. In contrast to the genome, the proteome is highly
variable over time, between cell types and will change in response
to changes in its environment.** Proteomics provides insights
into the role proteins have in biological systems. A major chal-
lenge is the high variability in proteins and protein abundance in
certain types of biological samples (eg, the concentration of
proteins in plasma ranges up to nine orders of magnitude).* This
requires the development of technologies that can detect a wide
range of proteins in samples from different origins.*® Many
proteomic technologies are currently available but broadly
a distinction can be made between approaches that are based on
detection by mass spectrometry and protein microarrays using
capturing agents such as antibodies. An important focus is the
identification of proteins including the presence of PTMs of
proteins and identification of proteins interacting in protein
complexes.*® * Another focus of proteomics is quantification of
the protein abundance. Protein expression levels represent the
balance between translation and degradation of proteins in cells.
It is therefore assumed that the abundance of a specific protein is
related to its role in cell function. However, the high dynamic
range (ie, the ratio between the smallest and largest concentra-
tion and/or mass value) of proteins complicates this type of
proteomic analysis.*? 4

Metabolomics

Metabolic phenotypes are the by-products that result from the
interaction between genetic, environmental, lifestyle and other
factors.”” The metabolome consists of small molecules (eg, lipids
or vitamins) that are also known as metabolites.*® Metabolites
are involved in the energy transmission in cells (metabolism) by
interacting with other biological molecules following metabolic
pathways. Metabolomics is defined as the study of metabolic
profiles in easily collected biological samples such as urine, saliva
or plasma.*® The metabolome is highly variable and time
dependent, and it consists of a wide range of chemical structures
(table 1). An important challenge of metabolomics is to acquire
qualitative and quantitative information concerning the metab-
olites that occur under normal circumstances in order to be able
to detect perturbations in the complement of metabolites as
a result of changes in environmental factors.

CHALLENGES FOR THE APPLICATION OF OMICS IN OEH

The development of new OMICS technologies is an important
first step towards implementation of OMICS markers in OEH.
However, similar to other (bio)markers of exposure, suscepti-
bility and effect, the successful implementation of OMICS
markers in OEH requires appropriate study designs, thorough
validation of markers, and careful interpretation of study
results.** !

Study design

As indicated in table 1 the transcriptome, proteome and
metabolome are highly variable over time and are likely to be
influenced by the disease process. This indicates that great care
should be given to the timing of biological sample collection and
adequate processing (eg, field stabilisation of mRNA) of the
sample to minimise measurement error and to avoid potential
differential misclassification biases. In table 2 the advantages and
disadvantages of the different human observational study (HOS)
designs with regard to the collection and use of biological
markers are given. In general, it can be stated that hospital-based
case-control studies are the least suitable for the application of
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Table 2 Comparison of advantages and limitations relevant to the collection of biological specimens and data interpretation in molecular epidemiology

study designs (adapted from Garcia-Closas et al, 2006*°)

Study design Advantages

Limitations

Cross-sectional » Facilitates intense collection and timely processing of specimens (eg, freshly frozen

samples, cryopreserved lymphocytes)

> Relevance of intermediate endpoints altered by current
exposures in healthy individuals not always clear

» Allows detailed collection of exposure and confounder information
Hospital-based case » Facilitates intense collection and timely processing of specimens (eg, freshly frozen » More prone to selection and differential biases than other

control samples, cryopreserved lymphocytes)

> Participation rates for biological collections might be enhanced
Facilitates follow-up of cases for treatment response and survival

v

designs
» Some biomarkers might be affected by disease process or
hospital stay

Population-based case P Less subject to biases (eg, selection, exposure misclassification) than hospital-based > Some biomarkers might be affected by disease process

control studies

Prospective cohort > Allows study of multiple disease endpoints

v

misclassification might be reduced for some exposures

> Nested case-control or case-cohort studies can be used to improve efficiency of

the design

Allows study of transient biomarkers and biomarkers affected by disease status
» Selection bias and differential misclassification are avoided: non-differential

» May be more difficult to obtain high participation rates for
biological collection than hospital-based designs

» Implementation of intense, specialised blood and tumour
collection and processing protocols can be challenging

> Implementation of intense, specialised collection and
processing protocols for the entire cohort can be
challenging

» (Qbtaining tissue samples and following cases for treatment
response and survival can be challenging in many cohorts

these technologies in HOS research, as they are more prone to
selection and differential bias, while prospective studies or cross-
sectional studies seem most suitable for such approaches.
Moreover, hospital case-control studies are problematic as it is
impossible to determine if changes in biomarkers are the cause or
consequence of a disease. Semi-longitudinal studies might be
extremely powerful for some OMICS technologies such as
transcriptomics, proteomics and metabolomics where biological
measures are taken before and after exposure or change in disease
status. In these study designs each individual serves as their own
control eliminating the influence of population variance.

Validation of biomarkers

The value of an OMICS-based biomarker in OEH depends on
the reliability of an assay to qualitatively and quantitatively
assess the biomarker and on the association between the
biomarker and the biological endpoint of interest (exposure,
susceptibility or health effect). The reliability of an assay can be
tested by investigating the variability of an assay within and
between laboratories and comparing results to the variability of
existing assays (standards). A necessary step towards an increase
in the reliability of OMICS assays is standardisation. Several
initiatives have developed standards for new OMICS assays
with regards to comparison to existing techniques (microarray
quality control (MAQC)), data formats to describe experimental
details (minimum information about a microarray experiment
(MIAME)) and assessment of sample quality (external RNA
controls consortium (ERCC)).”? 7 Once the reliability of assays
has been established in the laboratory transitional studies that
assess the association between biomarkers and biological
endpoints in humans are needed.”” To achieve an accurate esti-
mate of the association between a biomarker and a biological
endpoint reliable and valid measurements of exposure and
covariates are needed as well.

A true association between a biomarker and a biological
endpoint can be obscured by measurement error. To acquire
insight in impact of measurement error on the observed asso-
ciation between a biomarker and a biological endpoint a repeated
sampling design, at least on part of the population, is necessary.
Repeated sampling on individuals will allow researchers to
compare biomarker variability within individuals to biomarker
variability between individuals. One measure that can be used to
assess the variability of biomarkers within and between indi-
viduals is the intraclass correlation coefficient, which represents
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the proportion of the total variance that can be attributed to the
between-individual variance.*” The level of measurement error
that is acceptable for a biomarker depends on the magnitude of
the true association between the biomarker and the biological
endpoint of interest. For biomarkers with a dichotomous
outcome (eg, genotyping) the accuracy of the biomarker is based
on the sensitivity (eg, probability of correctly identifying an SNP)
and the specificity (eg, probability of incorrectly identifying an
SNP) of the biomarker.

Interpretation of study results

In recent years technological developments have had a major
impact on the development of new types of study designs of
OMICS-based studies. One trend that has been seen consistent
within the different OMICS fields is the enormous increase in
resolution of the assays (the number of “endpoints” that can be
assessed in a single assay) and throughput of the assays (the
number of samples that can be analysed per time period). Many
of the improvements are based on the introduction of chip-based
assays such as DNA microarrays. A major implication of the
possibility to investigate multiple endpoints (eg, up to 1000 000
SNPs in a single assay) in large populations is the possibility for
researchers to move away from hypothesis-based studies
(focused on a limited set of endpoints) towards hypothesis-free
(agnostic) types of study designs (including much larger sets of
endpoints). Although the hypothesis-free studies might
contribute considerably to the elucidation of the complex bio-
logical processes that underlie clinically manifested health
effects, it is important to realise that the interpretation of data
generated by these types of studies requires a different approach
than the interpretation of data generated by more traditional
hypothesis-based studies. In hypothesis-based study designs
“frequentist” measures such as 95% confidence intervals or p
values provide a reasonably good measure to assess the statistical
significance of the study’s finding. However, the interpretation of
such measures is based on the inclusion of a limited number of
hypotheses for which the researchers assume that there is a good
possibility that the null hypothesis might be rejected (ie, there is
a high prior probability of a true positive finding). In a hypoth-
esis-free analytic approach, a study is initiated without a well-
defined hypothesis for each included endpoint investigated (ie,
a flat prior probability for each finding). However, as a result of
chance, the increased number of possible endpoints in a study is
accompanied by higher probability of the possibility of detecting
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statistically significant false-positive results.”® Therefore, the
traditional statistical approaches that are commonly used in
epidemiology are of less value in hypothesis-free studies. A
current challenge for the OMICS field is the development of
(statistical) approaches that can be used for the interpretation of
the high-dimensional data generated by these high-throughput
techniques. Several statistical strategies (and also approaches in
study designs) have been developed to reduce the probability of
false-positive results. Examples are the Bonferroni adjustment for
multiple significance testing or more sophisticated Bayesian
approaches which include estimation of the false-positive report
probability.**~7 > > However, replication of the initial findings
in follow-up studies remains the strongest safeguard against
false-positive results. Studies that incorporate thousands of bio-
logical endpoints should therefore primarily be seen as discovery
studies that can aid the generation of new hypotheses. Therefore,
new OMICS studies should incorporate strategies for built-in
replication of the study findings. Application of a different
analytical technique to test the hypothesis a priori in a second/
validation set of samples will reduce the possibility that the
initial finding was an artefact of the technology used. A potential
strategy for built-in replication is to perform the initial analysis
on a subset of well-characterised samples matched on potential
confounders and effect modifiers and confirm the findings by
using alternative analysis methods on the remaining often larger
sample set. A potential problem in OEH research is, however,
that replication is often complicated as there are often only
a limited number of relatively small studies on a single exposure.
Even if another large study can be found on a single exposure
replication might still be complicated by the fact that the
populations are exposed to different levels.

In addition to aspects that contribute to random error,
systematic error (bias) is also a potential threat to the validity of
HOS utilising OMICS technologies.”®*° The types of bias that
might occur will be largely similar to types of bias that might
occur in all HOS. However, issues such as sample collection,
handling and storage of samples and analysis technique-specific
biases might be especially relevant for studies applying OMICS
technologies.”” **  Very recently guidelines for the reporting of
genetic association studies (STREGA) have been published.®!
These guidelines underline the necessity of detailed reporting in
publications on genetic association studies to allow scientists to
assess the potential of bias in study outcomes. Development of

similar guidelines for the other OMICS fields will contribute to
the identification of relevant types of bias.

Pathway analysis and systems biology
OMICS technologies will enable researchers to look at the
complete complement, expression, and regulation of genes,
proteins and metabolites. However, at the present time, most
statistical analyses are often based on a (simplistic) one-by-one
comparison of markers between exposure and/or disease groups.
Recently, analytical tools/databases have become available to
perform more integrated analyses of biological functions and
changes in biological functions as a result of environmental
factors. Examples of such approaches are gene ontology (GO),
pathway analysis and structural equation modelling (SEM).%2~%
GO is based on a library that consists of gene profiles that are
associated with biological processes.® Gene sets that are identi-
fied in microarray experiments as differently expressed are tested
for their association with a profile in the GO library.® In
pathway analysis, not only the profile of genes associated with
a specific biological process is tested, but also the functional
interactions between genes in a profile.> While still large gaps in
the knowledge of biological pathways exist, each new study will
contribute to build a base of knowledge necessary for these types
of analyses. SEM is a statistical approach that can be used to
simultaneously model multiple genes and multiple SNPs within
a gene in a hierarchical manner that reflects their underlying role
in a biological system.®

The increasing knowledge of biological pathways will facili-
tate the integration of the separate OMICS fields into systems
biology approaches. System biology has been described as
a global quantitative analysis of the interaction of all compo-
nents in a biological system to determine its phenotype.®” %
This integration is facilitated by a continuous increase in
computing power and possibilities for data sharing.

EXAMPLES OF THE USE OF OMICS IN OCCUPATIONAL AND
ENVIRONMENTAL HEALTH RESEARCH

In table 3 a number of studies are listed to illustrate the current
application of OMICS technologies in OEH research. Benzene
and arsenic were chosen as examples because of the large popu-
lations with potential exposure to these agents in both the
occupational and environmental setting and the relatively large

Table 3 Examples of the use of OMICS technologies in occupational and environmental studies that investigate health effects in human populations

exposed to benzene or arsenic

OMICS field Exposure Topic References
Genotyping Benzene Interaction between SNPs and benzene-induced toxicity 71—-73 77-80
Genotyping Arsenic Interaction between SNPs and arsenic-induced skin lesions 8182
Genotyping Arsenic Interaction between SNPs and arsenic metabolism 83 84
Genotyping Arsenic Interaction between SNPs and exposure to arsenic in relation to non-melanoma skin cancer 85
CNV Arsenic Interaction between DNA CNV and exposure to arsenic in relation to transitional cell carcinoma 86
CNV Arsenic Interaction between DNA CNV and exposure to arsenic in relation to bladder tumours 87
Epigenomics Benzene Relation between gene-specific hypermethylation and exposure to benzene 88
Epigenomics Arsenic Relation between epigenetic silencing of tumour suppressor genes and exposure to both tobacco 89

and arsenic
Epigenomics Arsenic Relation between genomic methylation and exposure to arsenic 90 91
Transcriptomics Benzene Relation between gene expression and exposure to benzene 92
Transcriptomics Arsenic Interaction between exposure to arsenic and arsenical skin lesions in relation to genome-wide 74

gene expression
Transcriptomics Arsenic Relation between gene expression and exposure to arsenic 93 94
Proteomics Benzene Impact of exposure to benzene on the composition of the proteome 95 96
Proteomics Arsenic Impact of exposure to arsenic on the composition of the proteome 97 98

CNV, copy number variation; SNP, single nucleotide polymorphism.
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number of studies on these agents that have applied OMICS
technologies. It should be noted that inclusion of the example
studies was not intended as a systematic overview of studies
applying OMICS in OEH research in these specific areas but
merely to provide a resource of studies that are indicative of the
potential of these new technologies. We highlight three studies
from table 3 in some more detail to illustrate the progress in the
OMICS field that has been made in recent years. A nice illus-
tration of the progress of the use of genotyping methods in OEH
research is a study on haematological effect among a cohort of
250 workers exposed to benzene and 140 controls.”%~"? Initial
gene—environment analyses in this study were based on candi-
date gene approaches focusing on genes involved in the metab-
olism of benzene (four genes, four SNPs),”> DNA double strand
break repair (seven genes, 24 SNPs),”* and cytokine and cellular
adhesion molecule pathways (20 genes, 40 SNPs).”” ITn a more
recent analysis of the same study population, Lan et al used
a chip-based assay (GoldenGate assay) for genotyping which
allowed for a larger number of SNPs to be assessed (414 genes,
1433 SNPs).”® These SNPs were selected from the SNP500Cancer
database, and were, therefore, hypothesised to be involved in the
development of cancer. However, the influence of these SNPs on
benzene-induced haematotoxicity was largely unknown for
most SNPs. This study should therefore primarily be seen as
hypothesis generating and indeed has provided information on
several putative genes involved in benzene haematotoxicity that
went well beyond the more classical focus in OEH research on
metabolic genes. Although the authors addressed issues of
multiple comparisons to reduce the chance of false-positive
findings due to the large number of SNPs included in the analysis,
it is still critical that the results are replicated in subsequent
independent studies.

An example of a hypothesis-free approach towards the
assessment of the transcriptome comes from a study by Argos et
al.”* In this micro-array-based study ~22 000 genome-wide gene
transcripts were measured in 25 subjects with arsenic-induced
skin lesions and 15 controls. A false discovery rate of 1% was
defined a priori to reduce the risk of chance findings. A set of 486
genes that were differentially expressed between cases and
controls was reported. The gene transcripts were also analysed
with the use of gene ontology and pathway analysis approaches
to elucidate the biological pathways that are involved in arsenic-
induced skin lesions. Similar to the genotyping results of the
studies discussed above, results from the genome-wide assess-
ment of the transcriptome should be interpreted with great care
and require replication in independent studies before they can be
used as valid exposure or effect markers.”” 7

Way forward

It is clear that there have been great technological advances in
the different OMICS fields. Some of these technologies have and
are starting to be applied in OEH research and will undoubtedly
lead to numerous new insights in the near future. With the
development of validated technologies, appropriate study
designs, better sample handling and advanced statistical
methods for data interpretation, OMICS techniques will even-
tually contribute significantly to OEH and will help the field
progress towards an integrated view of the interaction between
environment and human health. To achieve this integrated view
it will be important to not only focus on genetic variants but
also on more functional measures of the phenotype and accurate
assessment of exposure. The challenge in this effort will be that
the closer one gets to a functional measure of the phenotype (ie,
proteomics, metabolomics) the more complex it will be to
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capture physiologically relevant variability and the more crucial
the development of advanced study designs, sampling collection
procedures, measurement techniques, and methods for
statistical analysis will be to allow interpretation of these
parameters.
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