- Lahkola A, Salminen T, Auvinen A. Selection bias due to differential participation in a case—control study of mobile phone use and brain tumors. *Ann Epidemiol* 2005;15:321—5.
- Madigan MP, Troisi R, Portischman N, et al. Characteristics of respondents and non-respondents from a case-control study of breast cancer in younger women. Int J Enidemial 2000:29:793—8
- Greenland S. Basic methods for sensitivity analysis and external adjustment. In: Rothman KJ, Greenland S, eds. *Modern epidemiology*. 2nd edn. Philadelphia: Lippincott-Raven, 1998;Chapter 19:343—7.
- Arah OA, Chiba Y, Greenland S. Bias formulas for external adjustment and sensitivity analysis of unmeasured confounders. *Ann Epidemiol* 2008;18:637

 –46.

APPENDIX 1

The potential for bias in estimation of ORs: a worked example Consider the example of diabetes and the effect of unemployment status, with the following input assumptions....

- ► The true OR we seek to estimate (odds of occupational injury in those with diabetes versus those without)=2.0
- ► The RR of diabetes in employed versus unemployed men=3.0
- ► The estimate of prevalence of diabetes in our controls (y)=1.59%⁹
- ▶ We planned to study 1700 cases and 8500 controls....

RR	Prevalence (%) among controls in our sample (y)	Prevalence (%) in workers (solve for 'p')	Expected OR (vs 2.0)		
Diabetes					
3.00	$1.59 = (0.921 \times p) + (0.079 \times 3p)$	1.373%	1.72		

The extract from table 1 (above) shows that the estimated prevalence of diabetes in working controls (p) is 1.373%, and that the OR of 2.0 can be expected to be biased downwards to 1.72. This last figure is derived as follows:

If all the controls were workers, 1.373% of 8500 that is 116.705 (without rounding) would be diabetics and the remainder (8383.295) would not.

In fact, as our controls include some unemployed men, and as a whole have a prevalence of 1.59%, we estimate in error that 135.15 controls would have diabetes and 8364.85 would not.

Imagine first the 'true' 2×2 table, confined to workers, among whom the true OR for injury is 2.

Worker controls					
	Diabetes?				
Injury?	Yes	No	All		
Yes	Α	(1700—A)	1700		
No	116.705	8383.295	8500		

This table has one unknown, but OR=2. Thus, $(8383.295\times A)/(116.705\times (1700-A))=2$.

Solving for 'A' gives a value of 46.05:

Worker controls					
	Diabetes?				
Injury?	Yes	No	All		
Yes	46.05	1653.95	1700		
No	116.705	8383.295	8500		

Using 'all' controls rather than 'worker' controls will alter the bottom row of this table as follows:

All controls					
	Diabetes?				
Injury?	Yes	No	All		
Yes	46.05	1653.95	1700		
No	135.15	8364.85	8500		

Thus, instead of an OR of 2, the estimated OR would become: $(46.05 \times 8364.85)/(135.15 \times 1653.95) = 1.723$.

Corrections

NO2 and children's respiratory symptoms in the PATY study. **Pattenden S,** Hoek G, Braun-Fahrlander C *et al Occup Environ Med* 2006;**63**:828–835. This article was published with an incorrect doi of 10.1136/oem.2006.025213. The correct doi is 10.1136/oem.2005.025213.

Occup Environ Med 2010:67:877. doi:10.1136/oem.2005.025213

Valentini E, Ferrara M, Prasaghi F *et al.* Systematic review and meta-analysis of psychomotor effects of mobile phone electromagnetic fields. *Occup Environ Med* 2010;**67**:708–716. The citation in this review contains an error. The fourth author is De Gennaro L, not Gennaro LD.

Occup Environ Med 2010:67:877. doi:10.1136/oem.2009.047027corr1