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ABSTRACT
Objectives: To evaluate exposure estimation methods
such as spatially resolved land-use regression models and
ambient monitoring data in the context of epidemiological
studies of the impact of air pollution on pregnancy
outcomes.
Methods: The study measured personal 48 h exposures
(NO, NO2, PM2.5 mass and absorbance) and mobility
(time activity and GPS) for 62 pregnant women during
2005–2006 in Vancouver, Canada, one to three times
during pregnancy. Measurements were compared to
modelled (using land-use regression and interpolation of
ambient monitors) outdoor concentrations at subjects’
home and work locations.
Results: Personal NO and absorbance (ABS) measure-
ments were moderately correlated (NO: r = 0.54, ABS:
r = 0.29) with monitor interpolations and explained
primarily within-subject (temporal) variability. Land-use
regression estimates including work location improved
correlations for NO over those based on home postal code
(for NO: r = 0.49 changed to NO: r = 0.55) and explained
more between-subject variance (4–20%); limiting to a
subset of samples (n = 61) when subjects spent .65%
time at home also improved correlations (NO: r = 0.72).
Limitations of the GPS equipment precluded assessment
of including complete GPS-based mobility information.
Conclusions: The study found moderate agreement
between short-term personal measurements and esti-
mates of ambient air pollution at home based on
interpolation of ambient monitors and land-use regression.
These results support the use of land-use regression
models in epidemiological studies, as the ability of such
models to characterise high resolution spatial variability is
‘‘reflected’’ in personal exposure measurements, espe-
cially when mobility is characterised.

A growing body of epidemiological research indi-
cates adverse effects of outdoor air pollution on
birth outcomes,1 2 such as low birth weight,
preterm birth and intrauterine growth retardation.
Studies of birth outcomes have used different
methods to estimate exposure, including nearest
monitor,3 interpolation4 and traffic-based metrics,5

or, for small study populations, short-term perso-
nal sampling.6 7 Various studies have reported
associations between modelled estimates of traf-
fic-related air pollution and adverse birth out-
comes,5 8 but these models have not yet been
evaluated.

Spatial variability in air pollutant concentrations
between cities,9 10 between urban and rural areas,11

and within cities12 has been demonstrated.
Recent epidemiological studies have identified the

importance of capturing within-city spatial varia-
bility in air pollution exposure.13 14 Specifically,
studies of traffic-related air pollution have used
proximity (ie, living near a busy road),15 traffic
volume or density measures5 16 or land-use regres-
sion (LUR)17 models as exposure indicators. LUR
models use a combination of outdoor measure-
ments and geographical variables to estimate
within-city variations in traffic-related air pollu-
tion.18 19 Generally, traffic-related air pollution
exposure indicators incorporate little or no tem-
poral variability and are used to assess impacts of
chronic exposures. A few evaluations of ‘‘living
near a busy road’’20 or traffic density and urbanisa-
tion measures,21 as indicators of personal exposure
in children, demonstrated contrasts in personal
exposure using these metrics. No published studies
have evaluated LUR estimates of exposure against
personal measurements. A recent evaluation of the
use of a small number of ambient monitors to
predict population exposure to air pollution in
France showed little association between ambient
monitors and personal measurements.22–24 These
authors called for caution in using monitor-based
approaches in epidemiological studies of long-term
exposure (those exploiting spatial contrasts).22–24

In evaluating air pollution exposure assessment
methods for epidemiological studies we suggest
some key questions: First, how well do exposure
models estimate personal exposure? Secondly, can
the ability of models to account for spatial effects
be improved by including personal mobility data if
available? For example, although people spend 60–
80% of their time at and/or near home,25 including
subject-level mobility, such as time spent at work
or in transit, could improve exposure assess-
ments.26 27 Thirdly, how well do models account
for temporal variability (ie, changes in ambient
concentrations over time)? Depending on the
health effect being studied, either spatial or
temporal precision may be particularly important
for detecting associations. Air pollution exposure
assessment methods commonly used in large
epidemiological cohort studies have rarely been
evaluated against personal sampling. Accordingly,
we collected short-term personal air pollutant
measurements and mobility data for a sample of
pregnant women and compared these to their
modelled concentrations using interpolated ambi-
ent monitoring data and LUR models. Using
repeated samples per subject, we examined two
intermediate term (monthly) exposure models’
ability to predict measured short-term exposures.
We attempted to compare the models’ abilities to
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predict the spatial and temporal components affecting measured
personal exposures.

METHODS

Study subjects
We studied a sample of 62 pregnant women living in the central
Vancouver metropolitan area in 2005–2006 (population of
1.3 million over 1500 km2). Vancouver benefits from a tempe-
rate climate year round, has a relatively healthy and active
population, low smoking rates (15% across the province of
British Colombia) and high incomes (2003 average income per
tax-filer was C$47 000 per year). The inclusion criteria were
women who self-reported as healthy and experiencing low-risk
pregnancies and non-smokers living with non-smokers. We
recruited through prenatal classes, word-of-mouth and posters.
The study protocol and material were approved by the
University of British Columbia Behavioural Research Ethics
Board (#B05-0441).

Exposure measurement and estimation
For each study subject, we generated estimates of exposure to
ambient nitric oxide (NO), nitrogen dioxide (NO2), fine
particulate (PM2.5) mass and filter absorbance, using three
approaches: (1) personal sampling, (2) interpolated ambient
monitoring measurements and (3) previously developed LUR
models.28

Personal exposure measurements and activity recording
Each woman carried personal air monitoring equipment and a
global positioning system (GPS) datalogger in a small backpack
or shoulder bag (with the air monitors attached to the shoulder
strap in the breathing zone), and completed a self-administered
time-activity diary during each 48 h sampling session. Subjects
completed one to three sampling sessions each (one per
trimester); most were in their second trimester when recruited,
and thus completed only two sampling sessions. In total, there
were 127 sampling days with one to four subjects monitored per
day; sampling was conducted from September 2005 to August
2006.

We measured personal fine particles with personal environ-
ment monitors (PEM) (MSP, Shoreview, MN, USA). The PEM
was loaded with a pre-weighed 37 mm Teflon filter (Pall, East
Hills, NY) connected to a battery-powered sampling pump
(Leland Legacy, SKC, Eighty Four, PA) set to 5 l/min flow rate.
This flow rate, resulting in a 50% cut point of 2.2 mm, was used
to collect a sample more representative of traffic-combustion
generated fine particles. Triplicate mass measurements were
made in a temperature (23uC (SD 0.77uC)) and humidity-
controlled (34% (SD 3%)) weighing room as described pre-
viously.29 The limit of detection, calculated as three times the
standard deviation of the laboratory blanks, was 1 mg/m3 based
on a 48 h sample.

After weighing, we measured the reflectance of each filter
(Smoke Stain Reflectometer, Diffusion Systems, London, UK)
and calculated the absorbance (SOP ULTRA/KTL-L-1.0).30 NO
and NO2 were sampled with Ogawa passive samplers (Ogawa,
Pompano Beach, FL) and analysed by ion chromatography.
Duplicate sampling indicated a precision of 5% for NO and NO2

measurements by the Ogawa badges. Limits of detection were
0.161025 m21 for absorbance, 8.8 ppb for NO and 4.5 ppb for
NO2.

GPS dataloggers (BlueLogger, DeLorme, Yarmouth, ME) fitted
with a long-life battery pack (Alti-tech, Vancouver, Canada)

recorded latitude, longitude, time and speed every 5 s while a
GPS signal was detected (manufacturers’ reported accuracy
¡20 m with full signal). We verified the GPS signal at the start
of each session but did not ask subjects to check the signal
during the session to avoid overburdening them and to reduce
potential bias. We also wanted to evaluate the technology’s
application in exposure studies when participants were speci-
fically instructed to ignore the equipment.

In the activity diary, subjects recorded their locations (indoors
at home/work/other, outdoors, or in transit) at 0.5 h intervals
and we calculated the percentage of time each subject spent in
each microenvironment. For GPS route data, points within
350 m of home and 400 m of work were identified, and we
calculated percentages of time spent at home and at work from
these data.

Geocoding addresses and postal codes
Generally, only postal codes are available in population-based
epidemiology studies due to privacy concerns. Therefore, for
each subject, we geocoded the home and work address, as well
as the postal code centroid, using ArcGIS/ArcMap v 9.1 (ESRI,
Redlands, CA, USA), the CanMap Streetfiles, 2001 (DMTI
Spatial, Markham, Canada) road network and CanMap
Multiple Enhanced Postals (DMTI Spatial). In Canadian urban
areas, postal codes can represent an area as small as an
apartment building or a block face. Since geocoding may mis-
locate addresses for large building footprints, we obtained land
parcel data (lot boundaries and addresses) from the munici-
palities (2004–2005) in the study area and combined these with
attribute data from BC Property Assessment.31 All address
points were adjusted to the centre of the street-facing portion of
their respective land parcels.

Exposure estimates using ambient monitoring data
We extracted hourly PM2.5, NO and NO2 measurements from
all ambient monitoring stations within 50 km of the subjects’
homes (11 stations for NO/NO2, six stations for PM2.5). All
stations used consistent methods: chemiluminescence for NO/
NO2 and TEOMs for PM2.5.32 We assigned ambient monitor
data to subjects’ home postal codes using: (1) values from the
nearest station and (2) an inverse distance weighted (IDW)
interpolation (1/distance2) of the nearest three stations.
Measurements were averaged for the 14 days before and after
the personal sampling to generate a ‘‘monthly’’ estimate
(table 1). Spatio-temporal comparisons and visual representa-
tions of LUR and ambient monitor methods for this study area
are reported elsewhere.33

Exposure estimates using LUR models
The LUR models28 generate raster (continuous) surfaces
(10610 m resolution) covering the whole of the Greater
Vancouver Regional District. Briefly, the models were based
on a saturation sampling campaign (112 locations for NO, NO2;
25 locations for PM2.5 mass and absorbance). Geographical
predictors representing road density, land use, population,
elevation and traffic density were used in regression models to
predict measured concentrations and generate surfaces from
which estimates of concentration at any location in the study
area could be obtained. The models used in this study were
based on measures of road length and population density. R2

values for the models (using geographical predictors) were 0.62
(NO), 0.56 (NO2), 0.52 (PM2.5) and 0.39 (absorbance) and
validation R2 values (comparisons to independent monitors at
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16 sites for NO/NO2 and eight sites PM2.5) were 0.49 (NO), 0.69
(NO2) AND 0.09 (PM2.5). The surfaces were smoothed to
decrease the resolution to 30630 m to avoid small errors in
geocoding resulting in large numerical changes in exposure
estimates.

A unique feature of these models was the addition of ambient
monitoring network data from 1998–2004 to generate adjust-
ment factors for monthly temporal variation. These adjustment
factors assume that the spatial pollution patterns remained the
same, and raised or lowered the entire model surface relative to
an annual average. These monthly adjustment factors were
applied to the model surfaces, therefore generating LUR
exposure estimates for this study that corresponded to the
same month as the personal samples, for each subject-sampling
session combination. Both annual and monthly-adjusted
surfaces were used for all pollutants except ‘‘absorbance’’ (no
monthly trend was applied, by design, because ambient
absorbance did not vary consistently by season) (table 1).

We also incorporated ‘‘mobility’’ indicators into the LUR
model estimates in this study, using the time-activity and GPS
route data. Thus, we generated LUR exposure estimates based
on home location only (ie, assuming the subject spent 100% of
time at home), home+work locations (weighted by the
percentage of time spent at home and work from the
participants’ time-activity diary, assuming that the home and
work time summed to 100%), and estimates based on the
detailed GPS route data (taking into account the full range of
locations for each participant during a sampling session). This
last was done by extracting the LUR model values for every GPS
route point and then averaging the time-weighted estimates for
every GPS point in a route. This approach reflects all of the
subjects’ mobility during their sampling session and was used
only for sampling sessions with ‘‘complete’’ GPS route data
(n = 35). To determine ‘‘complete routes’’, we calculated time
gaps between each GPS point (average signal precision was
¡30 m when signal was established). Routes were excluded if
there were large time gaps (.16 h) or a combination of space
and time gaps between points.

Two sets of home and home+work estimates were generated:
one based on address location and the other based on postal
codes.

Statistical analysis
Data were analysed using SAS-PC v 9.1 (SAS Institute, Cary,
NC). All personal measurements were compared against
modelled estimates using Pearson’s r correlations. We also
created linear regression models for each pollutant with
personal exposure (log-transformed) as the dependent variable,
using mixed effects models, to examine the ability of exposure
estimates to explain different components of the variability

(between- and within-subject) in personal measurements, while
controlling for repeated measures among subjects.

RESULTS
Of the 62 women in the study, 55 completed two samples and,
of those, 10 completed three samples. Subjects with only one
sample (n = 7; due to miscarriage, early delivery, moving out of
the study area or withdrawal from study) were still included in
the analysis. Subjects were primarily white (82%), with a mean
age of 32 years, highly educated (90% university educated) and
with a median family income of C$60 000–80 000 per year. A
total of 127 samples were collected between October 2005 and
August 2006 (31% in winter, 39% in spring, 17% in summer and
13% in fall). The mean distance from participants’ home to
work was 6.3 km (range 0.7–21 km). There were 13 women
who worked from home or did not work.

Since LUR exposure estimates based upon addresses were
very highly correlated with those based upon postal code
estimates for all pollutants (home: Pearson’s r = 0.90–0.96;
work: Pearson’s r = 0.87–0.97), only postal code results are
presented. Postal code information is more commonly available
for population-based cohorts. Not surprisingly, given monitor
density and 1/distance2 weighting, estimates based on the
nearest ambient monitor were very similar to those based on
inverse distance weighting (IDW); therefore results are reported
for IDW only.

Personal exposure measurements were higher and more
variable (table 2) than LUR or ambient monitor (IDW) exposure
estimates. LUR estimates had greater variability and covered a
wider range compared to the monitor-based estimates. This is
expected for several reasons: LUR incorporates higher spatial
resolution, monitor-based estimates are constrained by the
range of the (relatively few) monitoring sites, and the monitor-
based sites are primarily urban background sites which will
suppress some variability.

For the 35 samples with complete GPS route data, the
percentage of time calculated to have been spent at home and
work was highly correlated with percentage estimates based on
activity logs (home: r = 0.96; work: r = 0.88). Six participants
worked at home but coded their activities as ‘‘work’’, which
may account for the observed lower correlation for work
activities. Similarly, for this same subset, mobility-adjusted LUR
exposure estimates (using full GPS route data) were highly
correlated with home-only estimates (r = 0.83–0.92) and very
highly correlated with the home+work estimates (r = 0.94–0.98)
for all pollutants.

Figure 1 shows scatter plots and simple correlations between
personal monitoring results and each of the following exposure
estimates: estimates based on ambient monitors (monthly, with
inverse distance weighting) and LUR (home-based estimates).

Table 1 Exposure estimation methods used in this analysis and their spatial and temporal averaging scales

Exposure estimation method Temporal averaging Spatial averaging

Personal measurements 48 h Integrated sample over all locations for the subject when the sample was collected

LUR: home Monthly*, annual Average for subjects’ home postal code location based on LUR (has about a 50 m spatial
resolution)

LUR: home+work Monthly, annual Time-weighted average of home and work postal code locations based on LUR (has
about a 50 m spatial resolution)

Ambient monitors (nearest monitor) Monthly, 48 h{ Distance to nearest monitoring stations (about 10 km on average)

Ambient monitors (inverse distance weighting) Monthly, 48 h{ Average of 3 nearest monitoring stations, weighted by distance – gives a spatial
resolution that varies with monitor density

*No monthly averaging for absorbance; {ambient 48 h results not shown; described as sensitivity analysis in the Discussion.
LUR, land-use regression.
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Only NO demonstrated moderate correlations using all
approaches to exposure estimation.

Mobility effects
LUR exposure estimates using home and work locations (table 3)
were slightly more highly correlated with personal measure-
ments for NO (r = 0.55) and NO2 (r = 0.28) than using only
home location. For the subset of data with full GPS routes
(table 3), using route-based (GPS) LUR estimates showed only
slight improvement over the home+work estimates when
compared to personal measurements (NO: home+work
r = 0.77, GPS r = 0.78; NO2: home+work r = 0.57, GPS
r = 0.66; absorbance: not significant; PM2.5: home+work
r = 0.45; GPS r = 0.47). The correlations were stronger for all
pollutants when analysing only the subjects with complete GPS
data. However, we noted that on sampling sessions with
complete GPS route data, subjects spent significantly more time
at home than on the sessions with incomplete GPS route data.
When stratifying to subjects who spent more time at home
(.65%), the LUR and monitor-based estimates were more
strongly correlated with the personal measurements than when
using all samples (eg, for NO home LUR: r = 0.72, NO monitors:
r = 0.59). The normalised root mean squared errors (NRMSE)
show similar trends across the pollutants, the lowest error (7–
10%) for NO indicating the trends are strongest for this
pollutant. Higher NRMSEs when stratified by mobility are
likely due to smaller sample sizes. As the data were log-
transformed for analysis, we converted the residuals to the
untransformed domain before calculating the RMSEs and
normalised the results using the true measurement range thus
giving the NRMSE (a percentage) for ease of interpretation.

The mixed-effects regression results (table 4) show the
proportion of variability in personal measurements explained
by the various exposure estimate ‘‘predictors’’. If an exposure
estimate explains some of the variability in the personal
measurements, a reduction in the variance component is
expected, compared to a model with no exposure predictors
(baseline model). The within-subject variance reflects

differences in exposures measured on the subject’s repeated
samples, differences expected to be dominated by temporal
changes in ambient pollution but also affected by variations in
subjects’ mobility or the impact of indoor sources between
sampling days. The between-subject variance we expect to be
dominated by spatial differences in pollution. In table 4, the
within-subject variance component for NO showed little
change with different exposure estimates. Since both estimates
include the same temporal trends but different spatial char-
acteristics, we conclude that this within-subject variance is
dominated by temporal changes in ambient concentrations. For
between-subject variance, more variance is explained for NO
when work location is incorporated (from 4% to 20%), which
supports the hypothesis that this variance is dominated by
spatial effects.

Overall, the variance components show similar patterns to
the correlations but inform us about how the exposure estimate
contributes to predicting the variability in personal data. An
increase in within-subject variance suggests that temporal
effects are important, whereas an increase in between-subject
effects suggests importance of spatial components. The LUR
approaches are intended to detect intra-urban spatial differences
in exposure, so improving our estimates spatially (ie, by
including work location) should increase the ability of the
LUR model to predict between-subject differences. In the case of
NO and (weakly) NO2, we observed an increase in variance
explained by the LUR model with a more spatially refined
estimate. The results for absorbance and PM2.5 show that the
weak correlation (fig 1) of the personal measurements with
ambient monitoring data was dominated by within-subject
effects likely caused by temporal shifts in ambient pollution. In
addition, for these pollutants the between-subject variance was
small overall, likely from the low intra-urban spatial variability
in concentrations.

The fixed-effect (slope) values from the regression models in
table 4 describe a predicted change in the personal sample
(dependent) for a change in the exposure estimate (indepen-
dent) adjusted to the interquartile range (IQR) of that
independent variable. These values (table 5 in the online

Table 2 Exposure estimates based on personal sampling, land-use regression and ambient monitors

Estimated exposure Method Arithmetic mean (SD) Geometric mean (GSD) Min–Max IQR

NO (ppb), Personal sampling* 48.5 (50.5) 36.7 (2.0) 6.9–474 37.5

n = 127 LUR{ home (monthly) 27.0 (19.7) 21.4 (2.0) 3.6–146 25.5

LUR home+work (monthly) 28.0 (18.4) 23.2 (1.9) 6.0–134 24.7

Ambient monitors IDW{ 17.6 (14.5) 13.9 (1.9) 4.2–83 13.0

NO2 (ppb), Personal sampling 18.7 (9.2) 16.9 (1.6) 4.8–76 11.1

n = 127 LUR home (annual)1 17.3 (3.3) 16.9 (1.2) 6.5–28 2.8

LUR home+work (annual) 17.4 (2.9) 17.2 (1.2) 7.6–27 2.5

Ambient monitors IDW 19.6 (4.0) 19.2 (1.2) 10.8–27 6.9

ABS (1025 m21), Personal sampling 0.9 (0.4) 0.8 (1.5) 0.2–2.4 0.5

n = 120 LUR home (annual)" 0.7 (0.3) 0.7 (1.7) 0.0–1.2 0.2

LUR home+work (annual) 0.7 (0.2) 0.7 (1.7) 0.1–1.3 0.2

No monitor data

PM2.5 (mg/m3), Personal sampling** 11.3 (6.6) 10.0 (1.6) 4.2–45.3 5.7

n = 124 LUR home (annual) 4.2 (1.5) 4.2 (1.4) 0.0–10.1 1.5

LUR home+work (annual) 4.0 (1.3) 3.7 (1.6) 0.3–7.5 1.3

Ambient monitors IDW 4.8 (1.3) 4.6 (1.3) 2.6–9.9 1.8

*One NO personal sample was below the limit of detection (LOD). All other samples were above their respective LODs.
{LUR surfaces as described in Henderson et al28 and that were developed based on road length metrics.
{IDW concentrations from the three closest monitoring stations.
1In the analyses, annual NO2 showed the strongest relationship to personal measurements (rather than monthly), so only annual results are reported in the descriptive tables.
"No monthly trend was applied to the absorbance estimates by design in the development of the LUR surface for this pollutant.
**Personal sampling for particulate was collected as PM2.2 not PM2.5; for simplicity, all tables and figures will refer to PM2.5 for all fine particulate sampling.
ABS, absorbance; IDW, inverse distance weighted; IQR, interquartile range; LUR, land-use regression.
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appendix, see supplementary data) are reported as a percentage
increase (due to the log-transformation of the dependent
variable): for NO, 61% increase with an IQR increase in LUR
and 41% increase with an IQR increase in monitor-based
estimates (IDW). There was a marginal increase in slope using
NO LUR home+work compared to home alone, suggesting that
controlling for mobility increased our ability to predict personal
exposure using outdoor LUR modelled NO.

Comparing pollutants
Overall, NO models performed best at explaining the spatial
(between-subject) variability in personal exposure in this
population. For NO2, annual LUR estimates explained a modest

amount of the spatial variability only. In comparing the ability
of ambient monitors to predict personal measurements for
different pollutants, NO explained more of the between-subject
variance than PM2.5 (table 3) or absorbance; NO2 was not at all
associated.

DISCUSSION
This study is the first to evaluate LUR models as predictors of
personal exposure in any study population. The unique focus on
personal exposures of pregnant women has also increased
exposure data for this potentially vulnerable population. We
found that LUR models showed the strongest ability to predict
personal measures for some pollutants (NO and NO2), while
ambient monitor estimates were also predictive in some cases
(NO, absorbance, PM2.5). Including mobility, based on work
location, improved exposure models.

Evaluation of LUR estimates
Focusing on LUR, we saw moderate correlations and an
increasing slope based on the fixed effect estimates from
regression models where we controlled for repeated measures
among subjects. For NO2, only annual average LUR values were
modestly associated with personal results. While both the NO
and NO2 models were developed using the same number of
samples and have similar R2 values, only NO showed a strong
relationship with personal measurements in this study.
Considering only the annual LUR values, NO had much greater
spatial variability (higher SD) than NO2. The surfaces also show
less distinct spatial variation for NO2 than NO (less transitions
in colour/shading).28 33 This result was expected, given that NO2

requires atmospheric transformation, whereas NO is a primary
emission. We suspect that the NO2 signal from traffic is
obscured by the effects of indoor sources and its lower spatial
variability relative to NO.

We saw little relationship between personal measurements
and LUR estimates for particulate pollutants (absorbance,
PM2.5), likely because of the low spatial variability of these
pollutants in our area,29 the fewer sites (compared to NO/NO2)
sampled when developing LUR models, and the resulting lower
LUR model and validation R2 values.28

Evaluation of spatial proximity to roads
Several studies have also demonstrated that differences in traffic
intensity and/or living near a busy road can be correlated with
personal measurements (NO, NO2 and/or absorbance). Van
Roosbroeck et al20 found an increase of 77% (unadjusted for
indoor sources) in home outdoor NO (but no significant
increase for NO2) and 38% in personal absorbance for children
living near a busy road (within 75 m of road with 10 000 cars/
day) in a study of 40 children in the Netherlands compared to
children living at urban background locations. In our study, we
found small and non-significant increases in arithmetic means
for NO (47.2 vs 53.3 ppb) and NO2 (18.2 vs 20.7 ppb) for
subjects living within 75 m of a road with 15 000 cars/day
compared to the rest of the study population. Our inability to
detect a strong proximity effect may be due to the relatively few
subjects (n = 15) living close to busy roads. In addition, distance
to road was confounded by building type; high-rise or large
multi-unit buildings were on average 150 m closer to busy roads
than smaller buildings (p = 0.003). Similarly, those living more
than four floors above ground were also closer to busy roads and
higher elevations around high-rise buildings can result in lower
concentrations.34

Figure 1 Scatter plots and Pearson’s r correlations (and p values) for
comparisons between personal measurements (n = 127) and exposure
estimates using land-use regression (LUR) and ambient monitoring
stations inverse distance weighted.
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Evaluation of ambient monitors
Ambient monitoring stations were relatively poor predictors of
spatial variability in personal exposures for all measured
pollutants except NO, but good predictors of temporal
variability. Mixed models (table 4) analyses show that most
of the variance explained by the ambient monitor-based
estimates was due to temporal correlations between subjects’
personal measurements and outdoor concentrations (within-
subject variance component). In the case of NO, we saw a small

amount of between-subject (spatial) variance explained by
ambient monitoring data. This is likely due to the dense
network in the study region (n = 11 monitors) and the relatively
high spatial variability of this pollutant. Monitor-based PM2.5

estimates explained no spatial variability between subjects; all
variance explained was temporal or within-subject. This is
unsurprising given both the lower within-city variability of
ambient PM2.5

29 and the relatively few (n = 6) monitoring
stations available for interpolation.

Table 3 Correlations and normalised root mean squared error (NRMSE)* between personal measurements and exposure estimates (same pollutant,
except absorbance as noted) for all subjects and subset with . and (65% of time spent at home

Personal measurements (log-transformed)
compared to modelled concentrations

Pearson’s r correlations (NRMSE %)

NO, n = 127 NO2, n = 127 ABS, n = 120 PM2.5{, n = 124

LUR home1 0.49 (7.6%){ 0.18 (13%){ 20.11 (18%) 0.07 (17)

LUR home+work 0.55 (6.9%){ 0.28 (13%){ 20.10 (18%) 0.10 (17)

Ambient monitors IDW monthly 0.54 (10%){ 0.05 (13%) 0.29{{ (18%){ 0.12 (17)

Subset analysis with .65% of total

sampling session at home (n = 61)

LUR home 0.72 (15%){ 0.26 (15%){ 20.19 (24%) 0.30 (20%){
LUR home+work 0.72 (10%){ 0.26 (15%){ 20.14 (24%) 0.29 (20%)"

Ambient monitors IDW monthly 0.59 (13%){ 0.06 (15%) 0.34 (22%){ 0.10 (21%)

Subset analysis with (65% of total

sampling session at home (n = 67)

LUR home 0.18 (14){ 0.14 (20){ 20.07 (20) 20.07 (16)

LUR home+work 0.31 (14){ 0.31 (20){ 20.08 (20) 20.08 (16)

Ambient monitors IDW monthly 0.49 (12){ 0.04 (20) 0.26 (19){ 0.12 (16)

*The normalised RMSE is the root mean squared error divided by the range of the personal measurements. The RMSE represents the difference between values predicted by the
exposure estimates and the observed values (personal measurements, in this case) and is defined as the square root of the mean squared error (measured units); the NRMSE is
expressed as a percentage.
{Indicates that the Pearson r correlation is significant at p,0.05; all others non-significant.
{Personal measurements as PM2.2 were compared to ambient and LUR data measured as PM2.5.
1Land-use regression values for NO and PM2.5 are monthly averages, whereas absorbance and NO2 are annual averages.
"Personal absorbance was compared to ambient monitored PM2.5, since absorbance is not measured by the ambient monitoring network.
ABS, absorbance; IDW, inverse distance weighted; LUR, land-use regression.

Table 4 Models predicting personal measurements using outdoor ambient exposure estimates and controlling for repeated measures on subjects

Model description (random and fixed effects)

Variance component (95% confidence limits)
% Variance explained* (compared to
baseline)

Within subject (sWS) (temporal) Between subject (sBS) (spatial) sWS sBS Total{

NO personal (dependent)

Baseline (subject only) 0.332 (0.242 to 0.485) 0.188 (0.101 to 0.470)

+LUR NO home 0.214 (0.156 to 0.312) 0.180 (0.107 to 0.366) 36 4 24

+LUR NO home+work 0.210 (0.153 to 0.306) 0.151 (0.086 to 0.327) 37 20 31

+Ambient monitors IDW NO 0.208 (0.152 to 0.304) 0.162 (0.094 to 0.343) 37 14 29

NO2 personal (dependent)

Baseline (subject only) 0.087 (0.063 to 0.126) 0.112 (0.072 to 0.202)

+LUR NO2 home (annual) 0.086 (0.062 to 0.125) 0.110 (0.070 to 0.199) 1 2 2

+LUR NO2 home+work (annual) 0.084 (0.061 to 0.122) 0.104 (0.066 to 0.190) 3 7 6

+Ambient monitors IDW NO2 –

Absorbance personal (dependent)

Baseline (subject only) 0.165 (0.118 to 0.246) 0.025 (0.006 to 1.341)

+LUR absorbance home –

+LUR absorbance home+work –

+Ambient monitors IDW PM2.5 0.146 (0.105 to 0.219) 0.029 (0.009 to 0.422) 11 (–) 8

PM2.5 personal (dependent)

Baseline (subject only) 0.169 (0.121 to 0.251) 0.060 (0.026 to 0.251)

+LUR PM2.5 home –

+LUR PM2.5 home+work –

+Ambient monitors IDW PM2.5 0.154 (0.110 to 0.230) 0.075 (0.036 to 0.230) 9 (–)

*The ‘‘% variance explained’’ is simply a per cent change between the variance in the baseline model compared to one with an exposure estimate; ‘‘(–)’’ means that less variance
was explained than by the baseline model.
{Per cent of variance explained from significant models (between- and within-subject) represents the amount of spatial and temporal variability, respectively, in personal
measurements explained by the model effects.
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The inability of ambient monitoring methods to capture
spatial variability between subjects has been shown in other
(primarily cross-sectional) analyses comparing ambient and
personal measurements.24 For example, a traffic-based index
explained more variance in the personal measurements than
ambient monitored NO2

35 but less than ambient PM2.5.23

We found low longitudinal correlations with ambient
monitoring data when compared to other studies36–38 because
we had few repeated samples (one to three per subject) and used
the monthly average (to be consistent with the temporal
component in the LUR model) of the ambient monitors.
However, in sensitivity analyses, we recalculated ambient
monitor concentrations averaged over the exact 48 h sampling
session to clarify the impact of temporal trends on personal
exposures. Moving to a more time-specific exposure window
improved correlations between personal and ambient monitor-
based concentrations for NO, PM2.5 and absorbance but not for
NO2. For example, a greater amount of within-subject variance
in personal absorbance (6–42%) was explained by ambient
PM2.5 when a more refined time window was used.

Comparing ambient versus LUR
A unique feature of this study is the investigation of both
ambient monitor-based and LUR estimates in comparison to
personal measurements. The fact that both estimates were
predictive of personal NO is especially interesting given that
these two estimates show very different spatial characteristics.33

Hoek et al39 described three contributions to long-term average
exposures: regional (ie, differences at a >100 km scale), urban
(10 km scale) and local (1 km or less, modified by spatial
proximity to traffic sources) and argued that contributions from
each should be estimated separately and then combined to
approximate long-term exposure. The results from this study
showing that both local (represented by LUR estimates) and
urban level components (represented by ambient monitoring
concentrations) are contributors to personal measurements in
this population lend further weight to this argument.

We note that measurements in this study were from a non-
random (high educational attainment and non-smoking) sample
of pregnant women. Sampling was weekday only and unevenly
distributed across four seasons (but evenly distributed across
heating and non-heating seasons). There were also differences in
measurement methods (different samplers for ambient and
personal sampling; personal measures of PM2.2 compared to
monitoring network measures of PM2.5; variable badge perfor-
mance for personal versus ambient sampling because of different

face velocities) but we do not expect this to bias our results. The
comparison between relatively few snapshot (48 h) measurements
per person to exposure models designed for chronic exposure
studies (LUR) suggests this is an imperfect evaluation of spatial
differences in models designed for long-term exposure assessment.
We acknowledge in particular that temporal scales are not
consistent between the exposure measurements and estimates as
a limitation of this analysis; however, it would be difficult to
conduct month-long personal sampling to obtain the appropriate
validation time scale for intermediate term exposure models.

Importance of mobility
There have been calls for increased use of mobility and time-
activity patterns to improve exposure assessment.40 When we
analysed the subset of subjects spending more time at home on
the sampling day, the (personal to home-only LUR) correlations
were stronger with increasing time spent at home. This
supports the use of LUR as a proxy for home exposure,
especially for populations who spend a greater proportion of
time at home. Including work locations as well as home
locations improved our ability to estimate personal exposures.

Transit-time exposures can occur during peak pollution times
on or near roadways,27 but in this study using GPS route data
(n = 35) had little effect on exposure estimates compared to
using home+work locations. However, we found the GPS
technologies did not work well for the most mobile segment of
our population. In univariate and multiple regression analyses
(results not shown), time spent in motorised and non-motorised
transit was not associated with personal exposures.

When considering exposure assessment methods to be used in
future air pollution epidemiological studies, understanding the
relevant time frame of the health effect of interest is important.
For example, in studies of chronic exposure a LUR model could
be combined with a yearly trend based on ambient data. The
combination of LUR and monthly or yearly time trends
presented in this paper is relatively novel and was developed
for a study of birth outcomes which required an intermediate-
length exposure window. For short-term exposures ambient
monitor-based methods are likely adequate.
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Main messages

c Air pollution concentrations as captured by ambient monitoring
network measurements, and local scale concentrations
differences, characterised in high resolution spatial models, both
contribute to personal exposure to traffic-related air pollutants.

c Personal exposures to NO are predicted by land-use regression
models, especially for those people spending most of their
time at home.

c Incorporation of work or school address information, in addition
to residential address, in exposure assessment improves the
ability of models to estimate measured exposures.

c For NO, the land-use regression method can be used to estimate
sub-annual averaged exposures and is useful for epidemiological
studies where shorter exposure windows are of interest.

Policy implications

c Neighbourhood-scale air pollution is an important contributor
to personal exposures, pointing to a need to focus on
reductions in air pollutants at both the regional (background)
and local (traffic) level.

c Exposures to ambient air pollution encountered at workplaces
or schools are important contributors to air pollution exposure,
in addition to those encountered while at home.
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