Three employees from two different detergent companies were investigated for occupational asthma, using skin prick tests, serum specific IgE, and specific bronchial challenge. Two were challenged with lipase and one with cellulase. All three cases had immunological evidence of sensitisation to the detergent enzymes with which they worked. Bronchial challenge in each provoked a reproducible dual asthmatic response, which reproduced their work related symptoms. These are the first reported cases of occupational asthma attributable to cellulase and lipase in the detergent industry. Four of the most common enzymes used in this industry have now been reported to cause occupational asthma; continued vigilance and caution are needed when working with these or other enzymes.

METHODS

Immunological testing

Each patient had skin prick tests to common aeroallergens (cat dander, grass pollen, and *Dermatophagoides pteronyssinus*; Allergopharma, Germany) and to 1 mg/ml solutions of the detergent enzymes to which they had been exposed at work. A positive skin test result was defined as one with a wheal diameter of ≥3 mm. Circulating specific IgE to the same enzymes was measured by radioallergosorbent (RAST) assay, with binding ≥2% considered positive.

Bronchial provocation testing

Because, in spite of the characteristic histories, other investigations were not diagnostic of occupational asthma, we undertook specific bronchial challenge in each case. All of the cases were still working with enzymes; none had ever taken bronchial anti-inflammatory medications. A single

Main messages

- Cellulase and lipase cause occupational asthma in the detergent industry.
- All enzymes should be considered to be potential respiratory sensitisers.

Policy implications

- Continued vigilance and appropriate preventative measures need to be taken by those working with enzymes.

Table 1 Immunological findings and specific bronchial challenges

<table>
<thead>
<tr>
<th>Enzymes at place of work</th>
<th>Skin prick test (size, mm)</th>
<th>RAST % binding</th>
<th>Challenge substance</th>
<th>Bronchial response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cellulase</td>
<td>6</td>
<td>25</td>
<td>Cellulase</td>
<td>Dual</td>
</tr>
<tr>
<td>Protease</td>
<td>4</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amylase</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipase</td>
<td>10</td>
<td>16</td>
<td>Lipase</td>
<td>Dual</td>
</tr>
<tr>
<td>Protease</td>
<td>7</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amylase</td>
<td>7</td>
<td>62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cellulase</td>
<td>5</td>
<td>nd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipase</td>
<td>6</td>
<td>38</td>
<td>Lipase</td>
<td>Dual</td>
</tr>
<tr>
<td>Protease</td>
<td>0</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amylase</td>
<td>nd</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cellulase</td>
<td>0</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

nd, not done.
blind, dust tipping method was used with lactose (first exposure day) as an inert control. Granulated enzymes provided by the employers were crushed by hand with a pestle and mortar and mixed with lactose powder. Each case was challenged with a single enzyme, with separate test exposures on separate days. Forced expiratory volume in 1 second (FEV₁) was measured regularly in the first hour, and hourly for the next 12–16 hours. PC₂₀ to inhaled histamine was measured by the Cockroft method before, and 24 hours after, the challenge.

Figure 1 Specific bronchial challenges: changes in baseline FEV₁ and histamine PC₂₀.
RESULTS

The results of the immunology and bronchial provocation test in the three cases are summarised in table 1 and fig 1.

Case 1: Cellulase

A 48 year old woman had worked in a detergent factory since 1990, nine years as a packer, and one year each as a cleaner and in the product development laboratory. In 1995 she developed work related running of the eyes and nose, and in 2001 developed breathlessness and nocturnal cough. She was an ex-smoker. She had no history of eczema, asthma, or hay fever. Skin prick tests to common aeroallergens did not provoke immediate reactions, but these were elicited by the detergent enzymes with which she worked: cellulase, protease, and amylase. She had evidence of circulating specific IgE with increased RAST binding to the three enzymes (table 1). On provocation testing she had no change in FEV₁ on exposure to lactose but a clear, repeatable dual response following exposure to cellulase. This reproduced her respiratory symptoms. Each test inhalation challenge was associated with a fall in histamine PC₂₀.

Case 2: Lipase

A 52 year old man had worked as an engineer in a detergent manufacturing company since 1966. He was an ex-smoker with no history of asthma, hay fever, or eczema. He had intermittent sneezing, runny eyes and nose for several years, and in 2001 developed work related cough, wheeze, and breathlessness. Investigations by his occupational health service had identified raised levels of specific IgE to detergent lipase and protease; serial peak flow measurements had proved undiagnostic. At clinic he had immediate skin prick test reactions and increased RAST binding to lipase, protease, and amylase, but not to common aeroallergens. A bronchial challenge to lipase was undertaken in 2003. This reproduced his work related symptoms associated with a dual asthmatic response. This pattern recurred on a subsequent challenge and was associated with a fall in histamine PC₂₀. There was no response to the inert challenge.

Case 3: Lipase

A 26 year old man had worked in the production of detergent tablets for seven years at the same site as Case 2. In early 2002 he had work related sneezing and a blocked nose and by the end of the same year had developed wheeze and chest tightness. He had never smoked and had no history of asthma, hay fever, or eczema. Investigations by his occupational health service identified raised levels of specific IgE to detergent lipase but no cross-shift changes in spirometry. At clinic he had immediate skin prick test reactions to common aeroallergens and was associated with a fall in histamine PC₂₀. Subsequent to the diagnoses of occupational asthma, Case 1 left her company, whereas Cases 2 and 3 continued to work for the same employer in non-enzyme areas.

A mixture of enzymes is now used in the manufacture of most biological detergents. Two cases were also sensitised to other enzymes and it is difficult to know whether these influenced the development of lipase and cellulase sensitisation. Animal studies have suggested that proteases potentiate the allergenicity of non-proteases, amylase and lipase. Cellulase has previously been shown by specific bronchial challenge tests to cause occupational asthma, in the pharmaceutical, baking, and enzyme production industries. We now describe for the first time occupational asthma to a cellulase derived from *Humicola insolens*. In baking and enzyme production the cellulase was derived from *Aspergillus niger*. “Cellulases” are a group of enzymes that hydrolyse cellulose to glucose. Because they may have different microbial origins, and different protein sequences, sensitisation to one cellulase cannot be assumed for another. To the best of our knowledge, occupational asthma has never previously been shown by specific bronchial challenge test with lipases. Interestingly Case 2 worked in a plant using only liquid enzyme preparations.

Despite encapsulation, sensitisation to detergent enzymes remains an important cause of occupational asthma. The use of these enzymes has been increasing over the past 15 years, and each of the four most commonly used detergent enzymes has now been described to cause occupational asthma. It would seem prudent to consider all enzymes to be potential sensitisers. Continued vigilance and appropriate preventative measures need to be taken by those working with enzymes.

ACKNOWLEDGEMENTS

We would like to acknowledge the contribution of Dr Peter Oliver.

Authors’ affiliations

A Brant, A Hole, J Cannon, J Helm, C Swales, J Welch, A Newman Taylor, P Cullinan, Department of Occupational and Environmental Medicine, Royal Brompton Hospital, Imperial College (NHLI), School of Medicine, London, UK

Correspondence to: Dr A Brant, Department of Occupational and Environmental Medicine, Royal Brompton Hospital, Imperial College (NHLI), 1b Manresa Rd, London SW36LR, UK, a.brant@ic.ac.uk

Accepted 24 March 2004

REFERENCES

Occupational asthma caused by cellulase and lipase in the detergent industry

A Brant, A Hole, J Cannon, J Helm, C Swales, J Welch, A Newman Taylor and P Cullinan

Occup Environ Med 2004 61: 793-795
doi: 10.1136/oem.2003.011288

Updated information and services can be found at:
http://oem.bmj.com/content/61/9/793

These include:

References

This article cites 9 articles, 1 of which you can access for free at:
http://oem.bmj.com/content/61/9/793#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections

- Allergy, asthma (82)
- Respiratory (203)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/