Mortality of petroleum refinery workers

We would like to comment on the paper by Satin and colleagues,1 which reports an update of a mortality investigation on two cohorts of petroleum refinery workers. The authors claim that one of the major aims of their study was the assessment of “health risks relative to more contemporary levels of exposure and work environments”. Nevertheless, they explicitly admit that a previous investigation in such cohorts,2 using the population of California as referent, found a strong “healthy worker effect” (that is, a significantly lower than expected mortality risk from cardiovascular disease and lung cancer). In our opinion, this observation, along with some other drawbacks, only in part expresses what is stated in the paper, might have biased most of the results obtained, leading the authors to draw unreliable conclusions. We shall discuss this issue in detail illustrating the main possible biases and how we believe they should have been interpreted.

Comparison bias

Exposure effects should be assessed in cohort studies by comparing the exposed cohorts with at least an unexposed one, as similar as possible in all relevant aspects.3

The new results by Satin et al4 have confirmed the occurrence of the “healthy worker effect” observed in the previous follow-up. Such a finding may indicate a comparison bias concealing the associations, if any, between exposure and health risks.5 In fact, occupational cohorts may differ from the general population in many features that have been associated with various risk factors, including socioeconomic status and personal habits.6 The presence of a comparison bias, at least in the Richmond refinery cohort, seems to be suggested by the risk for leukemia in the subgroup with the shortest duration of employment (<5 years), which is more than four times lower than the referent population (and nearly seven times lower than those of workers who worked the longest—that is, >30 years). Finally, the lack of data on smoking, whose differential distribution is among the main factors known to be responsible for the “healthy worker effect”, should have suggested a more cautious interpretation of the results of analyses about diseases associated with such a risk factor, especially lung cancer. Owing to the quality of the data analysed, most of these limits are unavoidable. However, in our opinion, the authors should have taken them into account in discussing their results. For instance, the low leukaemia risk observed, in particular, for workers hired after 1949, should not have been considered as evidence of a lack of effect of quite low doses of benzene.

Dilution effect

Petrochemical workers are likely to experience different kinds and levels of exposure by job category. As a consequence, results from an analysis carried out by pooling together different exposure categories may be affected by a dilution effect—that is, an underestimation of the true mortality risk associated to exposure. For example, Gennaro and colleagues7 highlighted an excess of lung cancer risk among petroleum workers exposed to asbestos in an Italian refinery, which became evident only by using an unexposed job category as an internal referent group. In this investigation, the most heavily exposed group (maintenance workers) was 38% of the whole cohort of employees, similar to the proportion (36%) reported in a previous study on 10 US refineries.8 However, in the Italian refinery, workers constituted 22% and 21% of the workforce among the Italian and US refineries, respectively, suggesting that the composition of this kind of cohort tends to be similar, at least in Western countries. Unfortunately, the quality of the data in their possession prevented the authors from carrying out risk analyses by job category, and they did not discuss the possibility that the inclusion, if it occurred, of a notable proportion of workers scarcely or not at all exposed may have caused a significant lowering of the estimated risks.9

Moreover, the inclusion in the present analysis of workers employed after 31 December 1980, thus inflating the at risk population estimates (person-years), could have further contributed to diluting the possible risks, in addition to preventing a precise comparison with the previous analysis. In fact, a long gap is expected between exposure and disease occurrence for most of the cancer sites considered. The mean time of follow up was roughly 33 years for workers hired before 1949 and only 23 for those hired after 1949, but the authors have not provided any information about the group employed since 1981, making it impossible to estimate the true risks associated with prolonged exposures. Comparing the paper by Satin et al to the previous follow-up, the number of workers enrolled after 1980 could amount to 3600 (that is, 31% of the subjects hired after 1949) and the corresponding follow up ranges from 1 to 15 years. However, these data do not allow the calculation of either the corresponding person-years at risk or the number of deaths which occurred.

Statistical analysis

The authors have indirectly evaluated the effect of exposures using the period of hiring (before versus after 1949) and the number of years worked as factors. Due to the lack of more precise measures of the polluting concentrations, such substitute variables are of course necessary, even though in our opinion, the analysis for another cut off after 1949 (for example, 1969 or 1979) might have yielded some additional information about the variation of such risks over time. Furthermore, a possible confounding effect between the period of hiring and the other variables (for example, length of exposure and latency) should have been taken into account, for instance, either by applying a multivariable statistical model, such as the Poisson regression, or by stratified analysis.10

Insensitive indicators

Mortality rates may be poor indicators of cancer risk for disease sites with a good prognosis, for example, leukemia and larynx cancer. For this reason, comparisons based on mortality rates might be affected by lack of statistical power. Moreover, the authors admit that the potential inaccuracies in the information from death certificates may have caused misclassification between asbestos and pneumoconiosis. However, this inaccuracy might have also affected the risk estimates for specific leukemia types. While the authors do not report any results for unspecified leukemia, another investigation on petrochemical workers’ found surprisingly much higher risks for both “acute unspecified” and “cell type unspecified” leukemia than those for each specified cell type, including acute myeloid (AML). In our view, when data come from death certificates, risk estimates for different leukemia cell types must be interpreted with extreme care. In particular, the authors’ claim that “the lack of any increase in AML ... argues against benzene’s role in the increase of MM and NHL found here” is not justified.

Conclusion

Cohort studies based on mortality data and not including an internal group as a control may be affected by several biases. For this reason, the estimates of association between exposure to toxic chemicals and health risks obtained by these studies should be considered with caution. Moreover, the observed excess of risk, if any, should not be ignored simply on the basis of the lack of statistical significance. The need for further investigations for a better evaluation of such risk, for instance, through nested case-control studies, should always be suggested.

S Parodi, F Montanaro, M Ceppi, V Gennaro
National Cancer Research Institute of Genova, Largo R. Benzi, 10 Genova, Italy; stefano.parodi@istge.it

References

LETTERS

If you have a burning desire to respond to a paper published in Occupational and Environmental Medicine, why not make use of our “rapid response” option? Log on to our website (www.occenvmed.com), find the paper that interests you, and send your response via email by clicking on the “letters” option in the box at the top right hand corner.

Providing it isn’t libellous or obscene, it will be posted within seven days. You can retrieve it by clicking on “read eletters” on our homepage.

The editors will decide as before whether to also publish it in a future paper issue.

Parodi et al raised several comments on our cohort mortality study of petroleum refinery workers in California. Their comments are general in nature and apply to most, if not all, occupational cohort mortality investigations, including such studies conducted in the USA, the UK, Canada, and Italy.16,17 We have discussed the same issues in our original paper. Below we will reiterate and expand our discussion of these issues in the order raised by Parodi et al.

The first comment raised by Parodi et al is the potential for the healthy worker effect (HWE) in our study. More specifically, Parodi et al conjectured that the HWE might have masked an excess of leukaemia, particularly in employees hired after 1949. The HWE is a potential problem common to all cohort studies that use general populations as the basis for comparison. All petroleum cohort studies conducted in the USA, the UK, Canada, and Italy are equally vulnerable. However, raising the HWE as an issue is a potential problem common to all cohort studies; nor is it axiomatic that the conclusions from these hospital based case-control studies are invalid. In fact, studies of comparable design have been conducted in other countries, including such studies conducted in the USA, the UK, and Canada. Therefore, none of the nested case-control studies which were included in previous reviews cited in our paper.18

The first comment regarding the lack of detailed exposure information for these cases is not an issue. In their conclusion, Parodi et al cautioned that the results of our study, and argued that the latency of these workers (15 years maximum) might not have been sufficient, thus "diluting" the risk of prolonged exposures among those hired in or before 1980. We would like to point out that, first, our investigation is not merely an academic exercise but an ongoing corporate medical monitoring programme that includes all employees. Second, an analysis stratified by latency was performed (table 3 in our original paper). The groups with 20–29 and 30+ years of latency did not include any employees hired after 1980 and, therefore, could not have been "diluted" by workers hired after 1980. Third, when analysing the exposed cohort, an analysis stratified by latency was performed (table 3 in our original paper). The groups with 20–29 and 30+ years of latency did not include any employees hired after 1980 and, therefore, could not have been "diluted" by workers hired after 1980.

Finally, Parodi et al commented that mortality might not be a good indicator of cancer risk. This general comment, of course, applies to all studies based on mortality. In the USA there is no national cancer registry, and it is simply not possible to ascertain cancer incidence in a historical cohort study of more than 18 000 workers that goes back to 1950. In their comments, Parodi et al were concerned with exposures to asbestos and benzene. The cancers related to these exposures are lung cancer, malignant mesothelioma, and acute myeloid leukaemia. These particular cancers have relatively poor prognosis, particularly in the past, and mortality may not be an unreasonable outcome measure. Parodi et al also commented on the diagnostic accuracy of death certificates. Again, this comment applies to all studies based on mortality. It should be noted that diagnostic accuracy varies by disease. For example, lung cancers are seldom misdiagnosed. Although some diagnoses on death certificates may not be as accurate as those based on detailed medical records, relying on death certificates in both the study and reference populations ensures comparability.

Furthermore, our interpretation of the result was based on not only what we observed, but also the findings of related studies. For example, for non-Hodgkin's lymphoma (NHL) and multiple myeloma (MM) metastatic cancer in general in these studies contradicted the findings of the original cohort studies; nor is it axiomatic that the conclusion from these hospital based case-control studies is that there is no relation between benzene exposure and NHL or MM. Therefore, our conclusion of MM and NHL mortality is based on our analysis on the basis of detailed medical records, relying on hospital based case-control studies which were included in previous reviews cited in our paper.18

In their conclusion, Parodi et al cautioned that the results of our study, and argued that the latency of these workers (15 years maximum) might not have been sufficient, thus "diluting" the risk of prolonged exposures among those hired in or before 1980. We would like to point out that, first, our investigation is not merely an academic exercise but an ongoing corporate medical monitoring programme that includes all employees. Second, an analysis stratified by latency was performed (table 3 in our original paper). The groups with 20–29 and 30+ years of latency did not include any employees hired after 1980 and, therefore, could not have been "diluted" by workers hired after 1980. Third, when analysing the exposed cohort, an analysis stratified by latency was performed (table 3 in our original paper). The groups with 20–29 and 30+ years of latency did not include any employees hired after 1980 and, therefore, could not have been "diluted" by workers hired after 1980.

Finally, Parodi et al commented that mortality might not be a good indicator of cancer risk. This general comment, of course, applies to all studies based on mortality. In the USA
original paper and that we have not over interpreted our data.

K Satin, W Bailey, K L Newton, A Y Ross
ChevronTexaco, PO Box 1627, Richmond, CA 94802-0627, USA; ksat@chevronastro.com

O Wong
Applied Health Sciences, Inc., PO Box 2078, San Mateo, CA 94401, USA

References

Sickness absence due to low back pain

In a recent interesting study published in your journal, Hoogendoorn and colleagues’ determined that high physical work load and job dissatisfaction increase the risk of sickness absence due to low back pain. I would like to focus on the job satisfaction variable.

It is to be noted that the above study was performed in a prospective fashion with employed workers who had no recent history of low back pain injury. As such, I would like to familiarise the reader with a series of studies performed with chronic low back pain (CLBP) patients treated in a pain facility. The results of the studies described below resonate with Hoogendoorn and colleagues’ results and point to the importance of perceived job stress and job dissatisfaction and their importance to job function.

In a series of four papers, Fishbain and colleagues have attempted to determine if pre-injury job satisfaction impacts on “intent” to return to work to the pre-injury job after pain facility treatment. In the first report, Fishbain and colleagues’ showed that chronic pain patients not intending to return to work after pain facility treatment were more likely to complain of job dissatisfaction. In the second report from this group, Rosomoff and colleagues’ showed that an association between non-intent to return to work after pain facility treatment and pre-injury job dissatisfaction was similarly found across Workers’ Compensation and non-Workers’ Compensation chronic pain patients. In the third report, Fishbain and colleagues’ looked at actual return to work after pain facility treatment in relation to these variables. They found that actual return to work was predicted at one month by “intent”, perceived job stress, and job like (job dissatisfaction plus other variables). At 36 months, return to work was predicted by “intent” and by perceived job stress plus other variables. In the final study, Fishbain and colleagues’ attempted to predict “intent” to return to work after pain facility treatment in relation to actual return to work. “Intent” was predicted by perceived pre-injury job stress plus other variables. In addition, those chronic pain patients who intended to return and did not, were predicted by whether there was a job to go back to. Furthermore, chronic pain patients not intending to go back to work to the pre-injury job initially, but doing so later, were predicted by having a job to go back to.

Overall, this series of studies points to a strong relation between pre-injury work variables such as job dissatisfaction and “intent” to return to that job after treatment. In addition, these studies indirectly support the findings of Hoogendoorn and colleagues. It seems that in trying to understand the low back pain injury and recovery process, it is important to take into account work related perceptions such as those of perceived job dissatisfaction and job stress.

D A Fishbain
University of Miami Medical School, Florida, USA;
d.fishbain@miami.edu

References

First World Congress on Work-Related and Environmental Allergy (1st WOREAL), and Fourth International Symposium on Irritant Contact Dermatitis (ICD), Helsinki, Finland, 9–12 July 2003

Congress on Work-Related and Environmental Allergy
• Work related and environmental aspects of respiratory and skin allergy
• Specific issues related to pathophysiology and skin allergy
• Management and prevention of allergy

Irritant Contact Dermatitis Symposium
• Occupational irritant dermitasis
• Prevention of irritant dermitasis
• Alternative methods for the assessment of irritants
• Irritant dermitasis from cosmetics

Satellite events
• Satellite Symposia, 9 July 2003
• Allergy School, 9–10 July 2003
• 7th International NIVA Course on Work-Related Respiratory Hypersensitivity, 11–15 July 2003

Congress Secretariat
Ms Kiri Saarela, Congress Manager Pyykko & Saarela Ltd
Limingantie 9
FIN-00550 Helsinki, Finland
Tel: +358 9 79 00 80
Fax: +358 9 757 36 30
Email: secretariat@woreal.org
Website: www.woreal.org

NIVA Training Programme 2003: Advanced Courses in Occupational Health and Safety
NIVA Training Programme 2003 offers 12 advanced courses on current themes of work

NOTES
Further information is available from the NIVA Office:
NIVA Nordic Institute for Advanced Training in Occupational Health
Topeliuksenkatu 41 a A
FIN-00250 Helsinki
Finland
Tel: +358 9 47 471
Fax: +358 9 4747 2497, +358 9 2414 634
Email: niva@ttl.fi
Website: www.niva.org

Assessment of Psychological Factors at Work
3–6 March 2003, Geilo Hotel, Geilo, Norway

Evaluation and Good Occupational Health Practice
23–27 March 2003, The Fell Hotel, Saariselkä (Lapland), Finland

Principles of Etiologic/Etiodiagnostic Research
11–16 May 2003, Hanasaari Cultural Center, Espoo (Helsinki), Finland

Toxicokinetic and Toxicodynamic Modeling in Occupational Health
15–19 June 2003, Red Cross Educational Training Center, Gripsholm, Sweden

Work-related Respiratory Hypersensitivity
10–15 July 2003, Marina Congress Center, Helsinki South Harbour, and The Sunborn Yacht Hotel, Naantali, Finland

Bullying and Harassment at Work
11–15 August 2003, Hotel Eckerö, Åland, Finland

Good Management Practice—Interaction of Environment, Safety and Quality
31 August–4 September 2003, Hotel Leviunturi, Sirkka (Lapland), Finland

Workplace Health Promotion—Practice and Evaluation

Indoor Air Quality Problems—Link between Indoor Pollution, Psychological Factors and Complaints
22–26 September 2003, Vilvorde Course Center, Vilvorde (Copenhagen), Denmark

Occupational Health Risk Assessment and Management
6–10 October 2003, Medical Academy of Latvia, Riga, Latvia

Introduction to Occupational Epidemiology
23–29 October 2003, Hotel Gentofte (Copenhagen), Denmark

Work-related Musculoskeletal Disorders: Current Research Trends
1–7 November 2003, The Sunborn Yacht Hotel, Naantali, Finland

Tools for the application of European Directives on health at the workplace—The example of chemical risk; Athens, Greece, 19–21 May 2003
Companies have to comply with national regulations stemming from European Directives on the prevention of occupational risks, including those resulting from exposure to hazardous chemicals. The symposium will provide a forum for a review of the problems encountered at the workplace.

The symposium is intended for a wide range of people: occupational physicians, people in charge of occupational health and safety, those responsible for implementing legislation or for advising companies on occupational risk prevention, representatives of the social partners and social security organisations, and specialists in air monitoring, biomonitoring, and epidemiology, etc.

More than 40 oral contributions and 120 posters will illustrate the three main topics of the symposium:
• Legal bases and practical considerations in the prevention approach, especially in SMEs.
• Chemical risk prevention tools.
• Outlook and new challenges for prevention.

Contributions will be given in English, French, German, and Greek, with simultaneous translation. Posters will be in English.

Symposium secretariat
ELINYAE (Hellenic Institute for Occupational Health and Safety), ISSA Research Section
Symposium 2003, Liosion 143 and Thirsiou 6, GR-104 45 Athens, Greece
Tel: +30 210 820 0220 (Ms Trianti), +30 210 820 0124 (Ms Bora)
Fax: +30 210 820 0222, +30 210 881 3270
Email: mtrianti@elinyae.gr
Website: http://www.athens-symposium-2003.gr
Sickness absence due to low back pain

D A Fishbain

Occup Environ Med 2003 60: 306
doi: 10.1136/oem.60.4.306

Updated information and services can be found at:
http://oem.bmj.com/content/60/4/306

These include:

References

This article cites 5 articles, 1 of which you can access for free at:
http://oem.bmj.com/content/60/4/306#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/