ORIGINAL ARTICLE

The risk to the United Kingdom population of zinc cadmium sulfide dispersion by the Ministry of Defence during the “cold war”

P J Elliott, C J C Phillips, B Clayton, P J Lachmann

Objective: To estimate exposures to cadmium (Cd) received by the United Kingdom population as a result of the dispersion of zinc cadmium sulfide (ZnCdS) by the Ministry of Defence between 1953 and 1964, as a simulator of biological warfare agents.

Methods: A retrospective risk assessment study was carried out on the United Kingdom population during the period 1953–64. This determined land and air dispersion of ZnCdS over most of the United Kingdom, inhalation exposure of the United Kingdom population, soil contamination, and risks to personnel operating equipment that dispersed ZnCdS.

Results: About 4600 kg ZnCdS were dispersed from aircraft and ships, at times when the prevailing winds would allow large areas of the country to be covered. Cadmium released from 44 long range trials for which data are available, and extrapolated to a total of 76 trials to allow for trials with incomplete information, is about 1.2% of the estimated total release of Cd into the atmosphere over the same period. “Worst case” estimates are 10 µg Cd inhaled over 8 years, equivalent to Cd inhaled in an urban environment in 12–100 days, or from smoking 100 cigarettes. A further 250 kg ZnCdS was dispersed from the land based sites, but significant soil contamination occurred only in limited areas, which were and have remained uninhabited. Of the four personnel involved in the dispersion procedures (who were probably exposed to much higher concentrations of Cd than people on the ground), none are suspected of having related illnesses.

Conclusion: Exposure to Cd from dissemination of ZnCdS during the “cold war” should not have resulted in adverse health effects in the United Kingdom population.

E arly in the “cold war”, from 1953 to 1964, a programme of zinc cadmium sulfide (ZnCdS) dispersion tests was conducted by the British Ministry of Defence, to simulate biological attack by communist forces. Discrete dissemination of toxic biological agents over the entire country was considered a high risk for an island such as Britain. Studies were conducted in Britain, America, and Scandinavia to determine whether small particles could be widely dispersed from aircraft or vehicles. Zinc cadmium sulfide was a suitable tracer, because it fluoresces under ultraviolet (UV) light and small particles could be counted on samplers around the country.

Initially various static disseminating and recording devices were tested at ground level, followed by release from vehicles and aircraft, from which the primary threat existed. Further studies investigated release from ships in the English Channel and the Irish Sea.

When information about the trials was released in the 1990s, public concern about health risks was voiced in America and Britain, but a toxicological assessment of the dispersion tests of ZnCdS carried out by the United States Army was reassuring.1 We independently reviewed the United Kingdom trials, assessing possible human exposure to cadmium (Cd) (the presumed toxic component of ZnCdS), and conducted a risk assessment in comparison with other sources of Cd.

METHODS

Field trial programmes, reports, and technical papers from Porton Down12 detailing the United Kingdom trials (most of which are, or shortly will be, available through the Public Records Office) were provided by the Defence Evaluation and Research Agency. Planned field programmes, operation dates, dissemination routes, quantities of ZnCdS disseminated and recovered and locations of sampling stations were described. Two internal reviews were conducted.14 15 Ground disseminating trials each released 0.4–9 kg ZnCdS from either a point source, to test equipment, or a vehicle, to simulate stealth attack. In early programmes fallout was measured in Petri dishes placed at about 2 m intervals in a grid around the disseminator.

Not all disseminations from aircraft and ships were comprehensively recorded. Some are reported more than once, and for others (approved in field programmes) no details are available. The aircraft trials over the sea were conducted 10–50 miles off the coast at an altitude of about 300 m. Particle fallout was monitored by cascade impactors or drum impactors located across the country. Widespread dissemination over hundreds of miles occurred.

The first trial using aircraft dissemination in 1956 released 12 kg ZnCdS over Porton from a hand fed Venturi unit below the aircraft. The last recorded aircraft dissemination in 1963 released 68 kg ZnCdS over 62 miles upwind and south west of Norwich. Other programmes, dated 1960–4, proposed dissemination by air at an unstated location (programme 23/60) and over Cardington (programmes 2/61, 24/62 and 10/63), Netheravon (programme 14/63) and Norwich (programme 2/64), but no details are available. Nine disseminations from ships are recorded in October and November 1959 and January 1963.

Abbreviations: UV, ultraviolet; Cd, cadmium; ZnCdS, zinc cadmium sulfide
For the long range trials, total ZnCdS disseminated was estimated from dissemination rate and trial duration. The theoretical inhaled dose at the sampling point with maximum particle count (the dose received by a person at that point during the passage of the particle cloud) was calculated from the number of inhaled particles. The following assumptions were made: the breathing rate of an active adult is 16.6 l/min, the number of particles/g is 1.7x10^10,^{11,12} there was a 50% loss of fluorescence in particles due to exposure to sunlight,^{11} and the ZnCdS was prepared from 60% ZnS and 40% CdS (31% Cd).^{16}

### RESULTS

About 51 trials were conducted from ground based sources, mostly at Porton and local airfields, with an estimated total of 250 kg ZnCdS disseminated (table 1). Calculations of maximum fallout are based on 20 000 µg/Petri dish (90 mm diameter), the highest concentration reliably recorded. This concentration was found only in one trial\(^1\) and equates to 110 µg/cm\(^2\).

A total of 42 trials with dissemination by air are documented, of which 29 took place over land, 11 over the sea, and two over both land and sea (table 2). The amount of ZnCdS disseminated could be calculated for 35 of the 42 trials, with a mean of 70 kg, range 5–139 kg, and a total amount disseminated in 35 trials of 2446 kg.

The highest particle count (4315) was found at Dorchester after dissemination over the English Channel in 1959, with 127 kg ZnCdS released from a Venturi operated dispenser mounted in a Valetta aircraft, with the flight path finishing close inshore just south of Swanage. Counts over 1000 were also recorded over Cardington in August 1957 (particle count = 3403) and November 1957 (1070), and at Silloth (1591), the start of a flight path over northern England and the North Sea.

There were nine trials with dissemination from ships (table 3). The highest particle count (1676) was recorded at Dorchester when 11 kg ZnCdS was discharged 18 miles south of Portland Bill. The second set of trials, conducted in the English Channel in January 1963, concerned the penetration of ships by aerosol, and no land based monitoring was conducted. In total 250 kg ZnCdS was released from nine trials.

An estimated 2700 kg was released from 35 air disseminated and nine ship disseminated trials, and 250 kg from land based trials. Assuming that the mean of 70 kg was released from each of the seven undocumented long range trials, an estimated 3450 kg was disseminated in total. The programmes dated 1960–4, for which further data are not available, are summarised in table 4. Altogether 28 trials were proposed, but there were three small and are not considered further. Proposed release of ZnCdS in the remaining 25 trials was 1387 kg. Assuming these trials took place, this would have resulted in a total ZnCdS disseminated during 8 years of about 4850 kg (1503 kg Cd).

The largest estimated dose received by any person during any one trial was 0.42 µg ZnCdS (0.13 µg Cd) (table 2). Assuming a total of 76 long range dissemination trials (51 trials in tables 2 and 3 and 25 trials in table 4), and a “worst case” assumption that at each trial a person received the maximum dose (0.13 µg Cd, calculated from the Dorchester measurements), then the maximum total dose over an 8 year period was about 10 µg Cd.

### DISCUSSION

Zinc cadmium sulfide is a sintered, crystalline compound the photosensitivity of which makes it useful for photography, and it is thought to be safe in this role.\(^\text{17}\) However, Cd accumulates in the body, especially in the kidneys and to a lesser extent in the liver. There is uncertainty about the fate of ZnCdS when it is breathed deep into the lungs. Cadmium ions are carcinogenic in the alveolar cells, but the insolubility of ZnCdS probably reduces this potential. About 5% of ingested Cd\(^\text{18}\) and up to 57% of inhaled Cd\(^\text{19}\) is absorbed, bound to albumen or to metallothionein. Initially stored in the liver, Cd metallothionein enters the kidneys, where the lysosomes in the proximal tubules release the Cd, impairing tubule function. The estimated 1.5 tonnes total Cd dissemination by the Ministry of Defence compares with an estimated 15 tonnes Cd released into the atmosphere from United Kingdom industry annually.\(^\text{10}\) Thus, the United Kingdom trials increased the atmospheric Cd load by about 1.2%.

The estimated maximum inhaled dose from any one trial was 0.13 µg Cd, which is several orders of magnitude lower than the Cd concentration in air (100 µg Cd/l) required to cause lung damage in mammals.\(^\text{20}\) Our “worst case” estimate of cumulative personal dose received from all trials was about 10 µg, which is of the same order as the estimated total Cd inhalation in North American cities affected by the tests (24.4, 14.5, and 6.8 µg in St Louis, Winnipeg, and Minneapolis, respectively).\(^\text{1}\)
The currently accepted critical limit of Cd in the renal cortex is 200 µg/g,
thus the “worst case” dose in the United Kingdom equated to the
amount of Cd inhaled in an urban environment in 12–100
days, or from smoking about 100 cigarettes. However, the possibility
of photodegradation of a proportion of the ZnCdS to soluble
forms—such as ZnCdSO4—cannot be ruled out. Assuming
of photodegradation of a proportion of the ZnCdS to soluble
forms—such as ZnCdSO4—cannot be ruled out. Assuming
the immediate contamination from ground based dissemination
was probably not a serious problem as most releases
were on airfields, which were not used for food production.
There are two perceived risks of long term soil contamination,
to garden plants subsequently grown on the site which may accumulate and contaminate consumers, and to children con-
suming contaminated soil. No long term adverse effects
grown on the site which may accumulate and contaminate consumers, and to children con-
suming contaminated soil. No long term adverse effects
through garden plants have been established from Cd
contaminated garden soil at Shipham.

<table>
<thead>
<tr>
<th>Report</th>
<th>Date of trial</th>
<th>Approximate amount released (kg)</th>
<th>Location</th>
<th>Maximum particle count</th>
<th>Sampling rate (l/min)</th>
<th>Estimated inhaled dose (µg)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR 504</td>
<td>11 September 1956</td>
<td>12</td>
<td>Porton</td>
<td>351</td>
<td>17.5†</td>
<td>0.039</td>
</tr>
<tr>
<td>FR 514</td>
<td>25 April 1957</td>
<td>138</td>
<td>North Sea</td>
<td>337</td>
<td>22</td>
<td>0.030</td>
</tr>
<tr>
<td>FR 516</td>
<td>28 August 1957</td>
<td>5</td>
<td>Cardington</td>
<td>3403</td>
<td>20</td>
<td>0.332</td>
</tr>
<tr>
<td>FR 515</td>
<td>13 November 1957</td>
<td>117</td>
<td>North Sea</td>
<td>112</td>
<td>10</td>
<td>0.022</td>
</tr>
<tr>
<td>PTP 633</td>
<td>14 November 1957</td>
<td>**</td>
<td>Cardington</td>
<td>999</td>
<td>20</td>
<td>0.010</td>
</tr>
<tr>
<td>PN 68</td>
<td>22 July 1958</td>
<td>98</td>
<td>Irish Sea</td>
<td>3415</td>
<td>20</td>
<td>0.041</td>
</tr>
<tr>
<td>PN 138</td>
<td>18/19 September 1958</td>
<td>116</td>
<td>English Channel</td>
<td>674</td>
<td>20.5</td>
<td>0.064</td>
</tr>
<tr>
<td>PN 139</td>
<td>28 October 1958</td>
<td>120</td>
<td>English Channel</td>
<td>669</td>
<td>20.5</td>
<td>0.064</td>
</tr>
<tr>
<td>PN 145</td>
<td>11 December 1958</td>
<td>83</td>
<td>North Sea</td>
<td>144</td>
<td>20.5</td>
<td>0.014</td>
</tr>
<tr>
<td>PN 185</td>
<td>14 April 1959</td>
<td>123</td>
<td>English Channel</td>
<td>182</td>
<td>20.5</td>
<td>0.017</td>
</tr>
<tr>
<td>PN 186</td>
<td>26 May 1959</td>
<td>139</td>
<td>North Sea and NE England</td>
<td>1591</td>
<td>21.5</td>
<td>0.145</td>
</tr>
<tr>
<td>PN 187</td>
<td>7 July 1959</td>
<td>139</td>
<td>English Channel &amp; Cornwall</td>
<td>123</td>
<td>20</td>
<td>0.012</td>
</tr>
<tr>
<td>PN 188</td>
<td>18 August 1959</td>
<td>127</td>
<td>English Channel</td>
<td>4315</td>
<td>20</td>
<td>0.421</td>
</tr>
<tr>
<td>PN 253</td>
<td>19 March 1958</td>
<td>**</td>
<td>Cardington</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>4 March 1959</td>
<td>**</td>
<td>Cardington</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>7 May 1959</td>
<td>**</td>
<td>Cardington</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>9 September 1960</td>
<td>**</td>
<td>Cardington</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>PN 134</td>
<td>29 May 1959</td>
<td>45</td>
<td>Cardington</td>
<td>966</td>
<td>20</td>
<td>0.009</td>
</tr>
<tr>
<td>3 June 1959</td>
<td>45</td>
<td>Cardington</td>
<td>446</td>
<td>20</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>25 August 1959</td>
<td>45</td>
<td>Cardington</td>
<td>179</td>
<td>20</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>15 September 1959</td>
<td>45</td>
<td>Cardington</td>
<td>1299</td>
<td>20</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>16 September 1959</td>
<td>45</td>
<td>Cardington</td>
<td>341</td>
<td>20</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>17 September 1959</td>
<td>45</td>
<td>Cardington</td>
<td>12</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 September 1959</td>
<td>45</td>
<td>Cardington</td>
<td>1</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 September 1959</td>
<td>45</td>
<td>Cardington</td>
<td>87</td>
<td>20</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>23 September 1959 (1st)</td>
<td>45</td>
<td>Cardington</td>
<td>2781</td>
<td>20</td>
<td>0.027</td>
<td></td>
</tr>
<tr>
<td>23 September 1959 (2nd)</td>
<td>45</td>
<td>Cardington</td>
<td>2711</td>
<td>20</td>
<td>0.026</td>
<td></td>
</tr>
<tr>
<td>PN 183</td>
<td>21 April 1960</td>
<td>17.5</td>
<td>Cardington</td>
<td>2909</td>
<td>20</td>
<td>0.020</td>
</tr>
<tr>
<td>25 May 1960</td>
<td>17.5</td>
<td>Cardington</td>
<td>143</td>
<td>20</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>26 May 1960 (1st)</td>
<td>17.5</td>
<td>Cardington</td>
<td>2851</td>
<td>20</td>
<td>0.028</td>
<td></td>
</tr>
<tr>
<td>26 May 1960 (2nd)</td>
<td>17.5</td>
<td>Cardington</td>
<td>3139</td>
<td>20</td>
<td>0.031</td>
<td></td>
</tr>
<tr>
<td>26 May 1960 (3rd)</td>
<td>17.5</td>
<td>Cardington</td>
<td>157</td>
<td>20</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>17 June 1960</td>
<td>91</td>
<td>Cardington</td>
<td>387</td>
<td>20</td>
<td>0.038</td>
<td></td>
</tr>
<tr>
<td>29 June 1960</td>
<td>91</td>
<td>Cardington</td>
<td>30</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 June 1960</td>
<td>91</td>
<td>Cardington</td>
<td>87</td>
<td>20</td>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td>1 July 1960</td>
<td>91</td>
<td>Cardington</td>
<td>36</td>
<td>20</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>PTP 764</td>
<td>27 October 1960</td>
<td>74</td>
<td>English Channel</td>
<td>2</td>
<td>21.3</td>
<td>0.000</td>
</tr>
<tr>
<td>28 October 1960</td>
<td>74</td>
<td>English Channel</td>
<td>91</td>
<td>19.8</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>Programme</td>
<td>**</td>
<td>**</td>
<td>Salisbury</td>
<td>**</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>17/60/PTP 610††</td>
<td>28 March 1963</td>
<td>68</td>
<td>Norwich</td>
<td>377</td>
<td>10</td>
<td>0.074</td>
</tr>
</tbody>
</table>

Several additional programmes were approved, but details of these trials are unavailable. These include proposed aircraft dissemination trials with unspecified location (programme 23/60), at Cardington (programme 2/61, 24/62 and 10/63), Netheravon (programme 14/63) and over Norwich (programme 2/64).

*Assuming respiratory rate of 16.6 l/min1,1.7. Thus, the inhalation dose at Dorchester is estimated as (4315 (particle count)×1010 (number of particles/g)) = 4.21 µg (0.13 µg Cd).

**Not given.

††PFTR 610 missing, but details are reported elsewhere39.
density of 1.5 g/cm³, the top 20 cm of soil contains at most an additional 3.3 µg Cd/g dry matter from the Beaulieu test. Added to the median Cd soil concentration (0.7 µg/g), the expected maximum is 4 µg/g dry matter, above the permitted maximum for sewage sludge application, although the area affected was small (table 1).

The risk of soil consumption by children can be determined from the estimated lowest observed adverse effect level to produce acute gastrointestinal symptoms) for a single dose of ingested Cd, estimated at 43 µg/kg body weight. A 10 kg child would need to eat 108 g dry matter of soil with 4 µg Cd/g to reach this dose. The background intake of Cd (12–84 g Cd/g day) is much higher than from contaminated soil.

The greatest risk of ground contamination was probably from material washed off the dispenser in the field before it was returned to headquarters, as operators were instructed that “gross contamination around the dispenser on the trailer will be brushed off and washed down before departing”.

However, the sites are not sufficiently precisely identified in the reports to permit remedial action, and in any case, in the intervening 35–48 years it is to be expected that some of the ZnCdS will have been subjected to chemical weathering and transmutation, broken down by bacteria, and leached from the surface soil. Any material that resisted breakdown for this period should be so insoluble as not to pose a health hazard.

A further possible risk was to four Ministry of Defence officials that operated disseminators, as the respirators may not have protected them against the particles, which had median diameter 1.5 µm and density 4 g/cm³. Two disseminators have survived and are in good health, one died aged 73 of a heart attack, and the final operator could not be definitively traced but is thought to be alive. The building on the Porton Range used for storing ZnCdS was destroyed at the end of the programme. Operators probably risked damage to eyes and exposed skin from ultraviolet light when counting ZnCdS particles, but this seemingly did not happen.

In conclusion, between 1953 and 1964, ZnCdS particles were disseminated from static sources, vehicles, ships, and aircraft by the Ministry of Defence. In long range trials, the inhaled dose during the most severe case was small (0.13 µg Cd). Land based trials did not significantly add to soil Cd, except close to the dissemination point. Risk to the public is therefore considered negligible. People involved in dissemination, who would have been exposed to large amounts of Cd, had no ill effects.

ACKNOWLEDGEMENTS

The study was supported by the UK Ministry of Defence.

Authors’ affiliations

P J Elliott, Department of Epidemiology and Public Health, Imperial College, University of London, St Mary’s Campus, Norfolk Place, London W2 1PG, UK
C J C Phillips, P J Lachmann, Department of Clinical Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
B Clayton, Faculty of Medicine, University of Southampton, Southampton, UK

REFERENCES

Risk from zinc cadmium sulfide dispersion during the "cold war"

2 Titt RA. Assessment of fallout of fluorescent powder emitted from the 'Stanford' type aerosol generator (programme 1/54). Porton: Ministry of Defence, 1954. (Field report No 353.)

3 Titt RA. Assessment of fallout of fluorescent powder emitted from the Stanford type aerosol dispenser (programme 1/54). Porton: Ministry of Defence, 25 October 1954. (Field report No 405.)

4 Titt RA. The long distance travel of particulate clouds (programme 17/53). Porton: Ministry of Defence, 13 July 1954. (Field report No 370.)

5 Titt RA. The long distance travel of particulate clouds (programme 17/53). Porton: Ministry of Defence, 8 June 1954. (Field report No 371.)

6 Titt RA. The long distance travel of particulate clouds (programme 17/53). Porton: Ministry of Defence, 13 July 1954. (Field report No 372.)

7 Titt RA. The long distance travel of particulate clouds (programme 17/53). Porton: Ministry of Defence, 13 July 1954. (Field report No 373.)

8 Titt RA. The long distance travel of particulate clouds (programme 17/53). Porton: Ministry of Defence, 13 July 1954. (Field report No 374.)

9 Trouern-Trend K. The long distance travel of particulate clouds (programme 17/53). Porton: Ministry of Defence, 6 August 1954. (Field report No 388.)


11 Titt RA. The long distance travel of particulate clouds (programme 17/53). Porton: Ministry of Defence, 5 May 1957. (Field report No 504.)


28 Titt RA, Bradshaw AE, Wheeler CL. The travel of aerosols by night and the influence of topography upon the dosage including penetration into built-up areas (programme No 17/60). Porton: Ministry of Defence, 10 August 1960.

29 Collins GF, Banfield JN. The penetration of built-up areas by aerosols at night (programme 2/63). Porton: Ministry of Defence, 7 May 1964. (Porton field trial report No 610.)


32 Collins GF, Banfield JN. The vulnerability of ships at sea to BW aerosol attack. Porton: Ministry of Defence, 7 February 1964. (Porton technical paper No 893.)


37 Banfield JN, Bradshaw AE, Musty JWG. The penetration of built-up areas by aerosols at night (programme 2/64). Porton: Ministry of Defence, 1 January 1964.


40 Titt RA. The long distance travel of particulate clouds. Porton: Ministry of Defence, 1954. (Field report No 370.)


The risk to the United Kingdom population of zinc cadmium sulfide dispersion by the Ministry of Defence during the "cold war"

P J Elliott, C J C Phillips, B Clayton and P J Lachmann

*Occup Environ Med* 2002 59: 13-17
doi: 10.1136/oem.59.1.13

Updated information and services can be found at:
http://oem.bmj.com/content/59/1/13

These include:

**References**
This article cites 6 articles, 1 of which you can access for free at:
http://oem.bmj.com/content/59/1/13#BIBL

**Email alerting service**
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/