The risk to the United Kingdom population of zinc cadmium sulfide dispersion by the Ministry of Defence during the “cold war”

P J Elliott, C J C Phillips, B Clayton, P J Lachmann

Objectives: To estimate exposures to cadmium (Cd) received by the United Kingdom population as a result of the dispersion of zinc Cd sulfide (ZnCdS) by the Ministry of Defence between 1953 and 1964, as a simulator of biological warfare agents.

Methods: A retrospective risk assessment study was carried out on the United Kingdom population during the period 1953–64. This determined land and air dispersion of ZnCdS over most of the United Kingdom, inhalation exposure of the United Kingdom population, soil contamination, and risks to personnel operating equipment that dispersed ZnCdS.

Results: About 4600 kg ZnCdS were dispersed from aircraft and ships, at times when the prevailing winds would allow large areas of the country to be covered. Cadmium released from 44 long range trials for which data are available, and extrapolated to a total of 76 trials to allow for trials with incomplete information, is about 1.2% of the estimated total release of Cd into the atmosphere over the same period. “Worst case” estimates are 10 µg Cd inhaled over 8 years, equivalent to Cd inhaled in an urban environment in 12–100 days, or from smoking 100 cigarettes. A further 250 kg ZnCdS was dispersed from the land based sites, but significant soil contamination occurred only in limited areas, which were and have remained uninhabited. Of the four personnel involved in the dispersion procedures (who were probably exposed to much higher concentrations of Cd than people on the ground), none are suspected of having related illnesses.

Conclusion: Exposure to Cd from dissemination of ZnCdS during the “cold war” should not have resulted in adverse health effects in the United Kingdom population.
For the long range trials, total ZnCdS disseminated was estimated from dissemination rate and trial duration. The theoretical inhaled dose at the sampling point with maximum particle count (the dose received by a person at that point during the passage of the particle cloud) was calculated from the number of inhaled particles. The following assumptions were made: the breathing rate of an active adult is 16.6 l/min, the number of particles/g is 1.7×10^4, and the ZnCdS was prepared from 60% ZnS and 40% CdS (31% Cd).

RESULTS

About 51 trials were conducted from ground based sources, mostly at Porton and local airfields, with an estimated total of 250 kg ZnCdS disseminated (table 1). Calculations of maximum fallout are based on 20 000 µg petri dish (90 mm diameter), the highest concentration reliably recorded. This concentration was found only in one trial and equates to 110 µg/cm².

A total of 42 trials with dissemination by air are documented, of which 29 took place over land, 11 over the sea, and two over both land and sea (table 2). The amount of ZnCdS disseminated could be calculated for 35 of the 42 trials, with a mean of 70 kg, range 5–139 kg, and a total amount disseminated in 35 trials of 2446 kg.

The highest particle count (4315) was found at Dorchester after dissemination over the English Channel in 1959, with 127 kg ZnCdS released from a Venturi operated dispenser mounted in a Valetta aircraft, with the flight path finishing close inshore just south of Swanage. Counts over 1000 were also recorded over Cardington in August 1957 (particle count = 3403) and November 1957 (1070), and at SIlloth (1591), the start of a flight path over northern England and the North Sea.

There were nine trials with dissemination from ships (table 3). The highest particle count (1676) was recorded at Dorchester when 11 kg ZnCdS was discharged 18 miles south of Portland Bill. The second set of trials, conducted in the English Channel in January 1963, concerned the penetration of ships by aerosol, and no land based monitoring was conducted. In total 250 kg ZnCdS was released from nine trials.

An estimated 2700 kg was released from 35 air disseminated and nine ship disseminated trials, and 250 kg from land based trials. Assuming that the mean of 70 kg was released from each of the seven undocumented long range trials, an estimated 3450 kg was disseminated in total. The programmes dated 1960–4, for which further data are not available, are summarised in table 4. Altogether 28 trials were proposed, but three were small and are not considered further. Proposed release of ZnCdS in the remaining 25 trials was 1387 kg. Assuming these trials took place, this would have resulted in a total ZnCdS disseminated during 8 years of about 4850 kg (1503 kg Cd).

The largest estimated dose received by any person during any one trial was 0.42 µg ZnCdS (0.13 µg Cd) (table 2). Assuming a total of 76 long range dissemination trials (51 trials in tables 2 and 3 and 25 trials in table 4), and a “worst case” assumption that at each trial a person received the maximum dose (0.13 µg Cd, calculated from the Dorchester measurements), then the maximum total dose over an 8 year period was about 10 µg Cd.

DISCUSSION

Zinc cadmium sulfide is a sintered, crystalline compound the photosensitivity of which makes it useful for photography, and it is thought to be safe in this role. However, Cd accumulates in the body, especially in the kidneys and to a lesser extent in the liver. There is uncertainty about the fate of ZnCdS when it is breathed deep into the lungs. Cadmium ions are carcinogenic in the alveolar cells, but the insolubility of ZnCdS probably reduces this potential. About 5% of ingested Cd⁴⁺ and up to 57% of inhaled Cd⁴⁺ is absorbed, bound to albumen or to metallothionein. Initially stored in the liver, Cd metallothionein enters the kidneys, where the lysosomes in the proximal tubules release the Cd, impairing tubule function. The estimated 1.5 tonnes total Cd dissemination by the Ministry of Defence compares with an estimated 15 tonnes Cd released into the atmosphere from United Kingdom industry annually. Thus, the United Kingdom trials increased the atmospheric Cd load by about 1.2%.

The estimated maximum inhaled dose from any one trial was 0.13 µg Cd, which is several orders of magnitude lower than the Cd concentration in air (100 µg Cd/l) required to cause lung damage in mammals. Our “worst case” estimate of cumulative personal dose received from all trials was about 10 µg, which is of the same order as the estimated total Cd inhalation in North American cities affected by the tests (24.4, 14.5, and 6.8 µg in St Louis, Winnipeg, and Minneapolis, respectively).
The National Research Council estimated that the average yearly inhalation dose of Cd from other sources was 30–250 µg, with smoking adding 2–4 µg/20 cigarettes. Thus, the “worst case” dose in the United Kingdom equated to the amount of Cd inhaled in an urban environment in 12–100 days, or from smoking about 100 cigarettes.

Being insoluble, CdS has a lower bioavailability when inhaled than soluble Cd compounds. However, the possibility of photodegradation of a proportion of the ZnCdS to soluble forms—such as ZnCdSO₄—cannot be ruled out. Assuming the currently accepted critical limit of Cd in the renal cortex is 200 µg/g, any additional renal burden was negligible.

The immediate contamination from ground based dissemination was probably not a serious problem as most releases were on airfields, which were not used for food production. There are two perceived risks of long term soil contamination, to garden plants subsequently grown on the site which may accumulate and contaminate consumers, and to children consuming contaminated soil. No long term adverse effects through garden plants have been established from Cd contaminated garden soil at Shipham.

United Kingdom regulations for sewage sludge application provide guidance on safe Cd concentrations in soils. Up to 3 µg Cd/g soil dry matter in the top 20 cm is permitted, with a maximum deposition of 1.5 µg Cd/cm²/10 years. The deposition rate of 110 µg/cm² at Beaulieu exceeds this limit, but is not illegal as it does not arise from sewage. Assuming a soil bulk

Table 2

<table>
<thead>
<tr>
<th>Report</th>
<th>Date of trial</th>
<th>Approximate amount released (kg)</th>
<th>Location</th>
<th>Maximum particle count</th>
<th>Sampling rate (l/min)</th>
<th>Estimated inhaled dose (µg)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR 504</td>
<td>11 September 1956</td>
<td>12</td>
<td>Porton</td>
<td>351</td>
<td>17.5</td>
<td>0.039</td>
</tr>
<tr>
<td></td>
<td>17 September 1956</td>
<td>111</td>
<td>North Sea</td>
<td>93</td>
<td>17.5</td>
<td>0.010</td>
</tr>
<tr>
<td>FR 514</td>
<td>25 April 1957</td>
<td>138</td>
<td>North Sea</td>
<td>337</td>
<td>22</td>
<td>0.030</td>
</tr>
<tr>
<td>FR 516</td>
<td>28 August 1957</td>
<td>5</td>
<td>Cardington</td>
<td>3403</td>
<td>20</td>
<td>0.332</td>
</tr>
<tr>
<td>FR 515</td>
<td>13 November 1957</td>
<td>117</td>
<td>North Sea</td>
<td>112</td>
<td>10</td>
<td>0.022</td>
</tr>
<tr>
<td>PTP 633</td>
<td>14 November 1957</td>
<td>**</td>
<td>Cardington</td>
<td>999</td>
<td>20</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>15 November 1957</td>
<td>**</td>
<td>Cardington</td>
<td>10709</td>
<td>20</td>
<td>0.104</td>
</tr>
<tr>
<td>PN 68</td>
<td>22 July 1958</td>
<td>98</td>
<td>Irish Sea</td>
<td>815</td>
<td>20</td>
<td>0.041</td>
</tr>
<tr>
<td>PN 138</td>
<td>18/19 September 1958</td>
<td>116</td>
<td>English Channel</td>
<td>674</td>
<td>20.5</td>
<td>0.064</td>
</tr>
<tr>
<td>PN 139</td>
<td>28 October 1958</td>
<td>120</td>
<td>English Channel</td>
<td>669</td>
<td>20.5</td>
<td>0.064</td>
</tr>
<tr>
<td>PN 145</td>
<td>11 December 1958</td>
<td>83</td>
<td>North Sea</td>
<td>144</td>
<td>20.5</td>
<td>0.014</td>
</tr>
<tr>
<td>PN 185</td>
<td>14 April 1959</td>
<td>123</td>
<td>English Channel</td>
<td>182</td>
<td>20.5</td>
<td>0.017</td>
</tr>
<tr>
<td>PN 186</td>
<td>26 May 1959</td>
<td>139</td>
<td>North Sea and NE England</td>
<td>1591</td>
<td>21.5</td>
<td>0.145</td>
</tr>
<tr>
<td>PN 187</td>
<td>7 July 1959</td>
<td>139</td>
<td>English Channel & Cornwall</td>
<td>123</td>
<td>20</td>
<td>0.012</td>
</tr>
<tr>
<td>PN 188</td>
<td>18 August 1959</td>
<td>127</td>
<td>English Channel</td>
<td>4315</td>
<td>20</td>
<td>0.421</td>
</tr>
<tr>
<td>PN 253</td>
<td>19 March 1958</td>
<td>**</td>
<td>Cardington</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>4 March 1959</td>
<td>**</td>
<td>Cardington</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>7 May 1959</td>
<td>**</td>
<td>Cardington</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>9 September 1960</td>
<td>**</td>
<td>Cardington</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>PN 134</td>
<td>29 May 1959</td>
<td>45</td>
<td>Cardington</td>
<td>961</td>
<td>20</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td>3 June 1959</td>
<td>45</td>
<td>Cardington</td>
<td>441</td>
<td>20</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>25 August 1959</td>
<td>45</td>
<td>Cardington</td>
<td>171</td>
<td>20</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>15 September 1959</td>
<td>45</td>
<td>Cardington</td>
<td>1291</td>
<td>20</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td>16 September 1959</td>
<td>45</td>
<td>Cardington</td>
<td>341</td>
<td>20</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>17 September 1959</td>
<td>45</td>
<td>Cardington</td>
<td>11</td>
<td>20</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>18 September 1959</td>
<td>45</td>
<td>Cardington</td>
<td>81</td>
<td>20</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>22 September 1959</td>
<td>45</td>
<td>Cardington</td>
<td>2781</td>
<td>20</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td>23 September 1959(1st)</td>
<td>45</td>
<td>Cardington</td>
<td>2711</td>
<td>20</td>
<td>0.026</td>
</tr>
<tr>
<td></td>
<td>23 September 1959(2nd)</td>
<td>45</td>
<td>Cardington</td>
<td>2711</td>
<td>20</td>
<td>0.026</td>
</tr>
<tr>
<td>PN 183</td>
<td>21 April 1960</td>
<td>17.5</td>
<td>Cardington</td>
<td>2090</td>
<td>20</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>25 May 1960</td>
<td>17.5</td>
<td>Cardington</td>
<td>1431</td>
<td>20</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>26 May 1960 (1st)</td>
<td>17.5</td>
<td>Cardington</td>
<td>2851</td>
<td>20</td>
<td>0.028</td>
</tr>
<tr>
<td></td>
<td>26 May 1960 (2nd)</td>
<td>17.5</td>
<td>Cardington</td>
<td>3151</td>
<td>20</td>
<td>0.031</td>
</tr>
<tr>
<td></td>
<td>26 May 1960 (3rd)</td>
<td>17.5</td>
<td>Cardington</td>
<td>1276</td>
<td>20</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>17 June 1960</td>
<td>91</td>
<td>Cardington</td>
<td>387</td>
<td>20</td>
<td>0.038</td>
</tr>
<tr>
<td></td>
<td>29 June 1960</td>
<td>91</td>
<td>Cardington</td>
<td>30</td>
<td>20</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>30 June 1960</td>
<td>91</td>
<td>Cardington</td>
<td>87</td>
<td>20</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>1 July 1960</td>
<td>91</td>
<td>Cardington</td>
<td>36</td>
<td>20</td>
<td>0.004</td>
</tr>
<tr>
<td>PTP 764</td>
<td>27 October 1960</td>
<td>74</td>
<td>English Channel</td>
<td>2§</td>
<td>21</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>28 October 1960</td>
<td>74</td>
<td>English Channel</td>
<td>91§</td>
<td>19.8</td>
<td>0.009</td>
</tr>
</tbody>
</table>

Programme

<table>
<thead>
<tr>
<th>Programme</th>
<th>**</th>
<th>**</th>
<th>Salisbury</th>
<th>**</th>
<th>**</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTP 610††</td>
<td>28 March 1963</td>
<td>68</td>
<td>Norwich</td>
<td>377</td>
<td>10</td>
</tr>
</tbody>
</table>

Several additional programmes were approved, but details of these trials are unavailable. These include proposed aircraft dissemination trials with unspecified location (programme 23/60), at Cardington (programme 2/61, 24/62 and 10/63), Netheravon (programme 14/63) and over Norwich (programme 2/64).

† Assumed respiratory rate of 16.6 l/min, 1.7 x 10¹⁰ particles/g (FR 504; PN 185), and loss of 50% of fluorescence (Collins 1981). Thus, for the trial on 18 August 1959, the inhaled dose at Dorchester is estimated as (4315 (particle count) -2 (loss of fluorescence)) x 16.6 (breathing rate) / 20 (sampling rate) x 1.7 x 10¹⁰ (number of particles/g) x 0.42 µg (0.13 µg Cd).

‡ Pages 18 and 19 of PN 134 missing.

§ Land based sampling (samples were also collected at sea).

¶ At height 2 m.

*† Assumed flow rate.

** Not given.

†† PFTR 610 missing, but details are reported elsewhere.

FR = field report; PN = Porton note; PTP = Porton technical paper; PFTR = Porton field trial report.

www.occenvmed.com
density of 1.5 g/cm³, the top 20 cm of soil contains at most an additional 3.3 μg Cd/g dry matter from the Beaulieu test. Added to the median Cd soil concentration (0.7 μg/g), the expected maximum is 4 μg/g dry matter, above the permitted maximum for sewage sludge application, although the area affected was small (table 1).

The risk of soil consumption by children can be determined from the estimated lowest observed adverse effect level (to produce acute gastrointestinal symptoms) for a single dose of ingested Cd, estimated at 43 μg/kg body weight.26 A 10 kg child would need to eat 108 g dry matter of soil with 4 μg Cd/g to reach this dose. The background intake of Cd (12–84 μg/day in urban areas, 10–60 μg/day from food and water) is much higher than from contaminated soil.

The greatest risk of ground contamination was probably from material washed off the dispenser in the field before it was returned to headquarters, as operators were instructed that “gross contamination around the dispenser on the trailer will be brushed off and washed down before departing”. However, the sites are not sufficiently precisely identified in the reports to permit remedial action, and in any case, in the intervening 35–48 years it is to be expected that some of the ZnCdS will have been subjected to chemical weathering and transmutation, broken down by bacteria, and leached from the surface soil. Any material that resisted breakdown for this period should be so insoluble as not to pose a health hazard.

A further possible risk was to four Ministry of Defence officials that operated disseminators, as the respirators may not have protected them against the particles, which had median diameter 1.5 μm and density 4 g/cm³. Two disseminators have survived and are in good health, one died aged 73 of a heart attack, and the final operator could not be definitively traced but is thought to be alive. The building on the Porton Range was brushed off and washed down before departing. The inhaled dose during the most severe case was small (0.13 μg).

Policy implications

- Excessive cadmium intake has potentially harmful effects on humans, but the contribution from Ministry of Defence trials during the cold war was very small in comparison with background exposure. There is no need for public concern over the Ministry of Defence dissemination.

REFERENCES

Risk from zinc cadmium sulfide dispersion during the “cold war”

2 Titt RA. Assessment of fallout of fluorescent powder emitted from the ‘Stanford’ type aerosol generator (programme 1/54) 1954. Porton: Ministry of Defence, 1954. (Field report No 353.)

3 Titt RA. Assessment of fallout of fluorescent powder emitted from the Stanford type aerosol dispenser (programme 1/54) 1954. Porton: Ministry of Defence, 25 October 1954. (Field report No 405.)

4 Titt RA. The long distance travel of particulate clouds (programme 17/53) Porton: Ministry of Defence, 13 July 1954. (Field report No 370.)

5 Titt RA. The long distance travel of particulate clouds (programme 17/53) Porton: Ministry of Defence, 8 June 1954. (Field report No 371.)

6 Titt RA. The long distance travel of particulate clouds (programme 17/53) Porton: Ministry of Defence, 13 July 1954. (Field report No 372.)

7 Titt RA. The long distance travel of particulate clouds (programme 17/53) Porton: Ministry of Defence, 13 July 1954. (Field report No 373.)

8 Titt RA. Titt RA. The long distance travel of particulate clouds (programme 17/53) Porton: Ministry of Defence, 13 July 1954. (Field report No 374.)

9 Trouern-Trend K. The long distance travel of particulate clouds (programme 17/53) Porton: Ministry of Defence, 6 August 1954. (Field report No 388.)

10 Titt RA. The long distance travel of particulate clouds (programme 17/53) Porton: Ministry of Defence, 24 August 1954. (Field report No 392.)

11 Titt RA. The long distance travel of particulate clouds (programme 17/53) Porton: Ministry of Defence, 4 May 1957. (Field report No 504.)

12 Wheeler CL. The long distance travel of particulate clouds (programme 1/57) Porton: Ministry of Defence, 2 January 1958. (Field report No 514.)

14 Wheeler CL. The long distance travel of particulate clouds (programme 1/57) Porton: Ministry of Defence, 21 February 1958. (Field report No 519.)

16 Titt RA, Laird AR. Long distance travel of particulate clouds (programme 10/58) Porton: Ministry of Defence, 29 February 1960. (Field report No 113.)

18 Collins GF, Laird AR. Long distance travel of particulate clouds (programme 10/58) Porton: Ministry of Defence, 29 February 1960. (Field report No 114.)

19 Titt RA. Long distance travel of particulate clouds (programme 10/58) Porton: Ministry of Defence, 23 January 1959. (Field report No 68.)

20 Collins GF, Laird AR. Long distance travel of particulate clouds (programme 10/58) Porton: Ministry of Defence, 23 January 1959. (Field report No 69.)

21 Laird AR, Titt RA. The long distance travel of particulate clouds (programme 10/58) Porton: Ministry of Defence, 26 January 1961. (Field report No 185.)

22 Laird AR, Titt RA. The long distance travel of particulate clouds (programme 10/58) Porton: Ministry of Defence, 1 March 1961. (Field report No 187.)

24 Collins GF. Experimental dispensers for fluorescent powder. Porton: Ministry of Defence, Undated. (Field report No 255.)

28 Titt RA, Bradshaw AE, Wheeler CL. The travel of aerosols by night and the influence of topography upon the dosage including penetration into built-up areas (programme No 17/60) Porton: Ministry of Defence, 10 August 1960.

29 Collins GF, Banfield JN. The penetration of built-up areas by aerosols at night (programme 2/63). Porton: Ministry of Defence, 7 May 1964. (Field trial report No 610.)

32 Collins GF, Banfield JN. The vulnerability of ships at sea to BW aerosol attack. Porton: Ministry of Defence, 7 February 1964. (Porton technical paper No 893.)

37 Banfield JN, Bradshaw AE, Musty JWG. The penetration of built-up areas by aerosols at night (programme 2/64). Porton: Ministry of Defence, 1 January 1964.

40 Titt RA. The long distance travel of particulate clouds. Porton: Ministry of Defence, 1954. (Field report No 370.)

The risk to the United Kingdom population of zinc cadmium sulfide dispersion by the Ministry of Defence during the "cold war"

P J Elliott, C J C Phillips, B Clayton and P J Lachmann

Occ *Env* *iron* *Med* 2002 59: 13-17
doi: 10.1136/oem.59.1.13

Updated information and services can be found at:
http://oem.bmj.com/content/59/1/13

These include:

References

This article cites 6 articles, 1 of which you can access for free at:
http://oem.bmj.com/content/59/1/13#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/