CORRESPONDENCE

Health risks from exposure to cadmium in soil

We were intrigued by the report and findings from Elliott et al of overall mortality, cancer incidence, and stroke mortality in Shipham village. Their findings are similar to the conclusions we reported in 1982 after work funded by the Department of Health and Social Security. We noted that “the failure to demonstrate any excess morbidity requiring hospital admission is reassuring for Shipham residents”. We identified a small but significant excess of carcinoma of the ovary but thought it extremely unlikely that this could be explained by exposure to cadmium; the histology of the two reported neoplasms was different and one of the patients resided at an address with a normal soil cadmium content. However, the soil concentrations of cadmium in Shipham were among the highest recorded in England.1,2

We also noted that “the postcode of residence was used to identify cases from these mortality and morbidity databases, held by the United Kingdom Small Area Health Statistics Unit (SAHSU).”3 Back in 1976, the need for record linkage was discussed.4 Our study of Shipham residents “was, in part, a response to the challenge that further interest should be stimulated in the use of Hospital Activity Analysis data” (HAA).5 We also reported that “for HAA purposes addresses of patients are coded by local authority district but records from different districts, however, are often restricted to much smaller geographical areas. Before we could calculate standardised admission ratios for Shipham, 451 hours of clerical work were required to identify the 201 records for Shipham residents”6. At that time the need to produce statistics for small areas had been recognised and the then Office of Population, Censuses and Surveys was introducing a postcode system for vital statistics in England and Wales.7

Postcoding of hospital patient data and record linkage followed in the late 1980s. Elliott et al were able to use these developments. We thought that public health fears generated for this population had been allayed by studies reported in the 1980s for their sources of exposure, dietary intake of cadmium, body burden of cadmium, morbidity, and mortality experience. What Elliott et al report is further evidence from longitudinal studies. The worth of such follow up studies is considerably weakened by knowledge that on average, 10% of the population move house each year, and difficulties estimating total body burden.

We think that much can be learned from the experience of studies involving this population. In particular, any such long term follow up studies are more sensitive to their public health needs. As Elliott et al and ourselves have noted, the methodological problems associated with interpreting findings from the use of routinely available data are considerable. It is therefore important for researchers, with the ready availability of powerful, computer based literature searching facilities and library held compendia—such as the Index Medicus—to be able to reassure researchers who have considered all the relevant background information and that their findings are being fully discussed in the context of other published work. Questions the informed reader will ask include: has a comprehensive search of the literature been undertaken? Has all the evidence been considered and is it coherent? Are there anomalies and can they be explained? What fresh insights has the study yielded? And what are the implications for public health? In this instance we are left asking why was this recent study undertaken and what has it added to existing knowledge? Or, in other words, why has this soil been turned over again? It should be realised that 1979, as a consequence of the news media scare and without any public health evidence, property values in the village dropped to half their market value. They took years to recover. Accordingly, we need to remind ourselves that we have a duty of care in planning research to ensure that our efforts to better understand occupational and environmental health problems are intended for the public good.

ROBIN PHILIPP

ANTHONY HUGHES

Centre for Health in Employment and the Environment, Department of Occupational Medicine, Bristol Royal Infirmary, Bristol BS2 8HW UK

Correspondence to: Dr R Philipp

Author’s reply—We have read with interest the comments to our paper by Philipp and Hughes. They note that we did not explore hospital admissions for several diagnoses. We have, however, used hospital admissions data in other Small Area Health Statistics Unit (SAHSU) studies, and found that analyses with such data are far from straightforward. It is doubtful that analysis of health outcomes—such as benign hypertension or calculus of the urinary system—would give any meaningful results, as most cases will not be admitted to hospital. We did not analyse incidence of gastric cancer, as there is no evidence that cadmium is a risk factor for this cancer.

Philipp and Hughes state that we “explored blood and urinary markers”, whereas we noted that “biological data (cadmium in blood or urine) were not available for use in the present investigation”. We saw no reason to “discuss the worth of in vivo neutron activation analysis”, because such methods are not particularly useful for exposure assessment in epidemiological studies.

We are fully aware of the historical background, which we described in the introduction to our paper, including a reference to the Wolfson geochemical atlas.8 We also referred to the original cohort analysis by Inskip et al, and several papers from the comments.
Non-neoplastic mortality of European workers who produce man made mineral fibres

EDITOR—The recent publication by Sali et al reports "a suggestion of an increasing risk of death from non-malignant renal diseases" among rock and slag workers with employment in the early technological phase.1 No such relation was found for glass wool workers. The 1985 follow up of the man made mineral fibre workers (MMF) study in the United States reported a significant increase in mortality for nephritis and nephropathy based on 56 deaths for the entire male cohort.3 Sali et al concluded that additional studies are warranted. We would like to point out an additional study of glass wool workers published earlier in this Journal dealing with nephritis or nephrosis.

The Division of Occupational Health Studies, Department of Family Medicine, Georgetown University Medical Center maintains a mortality surveillance system (MSS) on behalf of Owens Corning (OC). The MSS includes a detailed exposure information and the results of an interview survey which provides information on socio-demographic factors including education, marital status, income, drinking, and smoking. We used a case-control study with cases and controls derived from the MSS to investigate the question of whether there is an association between exposure to respirable glass fibre or silica and mortality from nephritis or nephrosis among workers in fibrous glass wool manufacturing facilities.4 Two case-control analyses were carried out, one in each cohort with the question of nephritis or nephrosis as the underlying cause and one in cases defined as those where nephritis or nephrosis is either the underlying or a contributing cause of death.

We found no consistent relation for respirable fibres or respirable silica when the analysis was based either on underlying cause only or on underlying plus contributing cause. None of the sociodemographic variables considered suggests an increased risk when considering both cause of death and contributing cause. For these data, all odds ratios for respirable fibres and silica based on both underlying and contributing cause of death are below unity with the exception of the highest exposure level for silica, which is 1.04. Although these results do not prove that there is no association between nephritis or nephrosis and exposure to fibreglass or silica in the fibreglass manufacturing environment, they do not support the assertion that such an association exists.

LEONARD CHIAZZE JR
DEBORAH K WATKINS
CHERYL FYRI
WILLIAM FAYERWEATHER

Georgetown University Medical Center, Department of Family Medicine, Division of Occupational Health Studies, 4035C Kohler Gagan Hall, 7505 Reservoir Road NW, Washington DC 20007, USA

Correspondence to: Dr L Chiazzare Jr

Dr PAOLO BOFFETTA
Unit of Environmental Cancer Epidemiology, International Agency for Research on Cancer, 150 Cours Albert-Thomson, 69372 Lyon Cedex 08, France

RODOLFO SARACCI
Unit of Nutrition and Cancer

Correspondence to: Dr P Boffetta

http://www.iarc.fr

The vibration experienced by some vehicle and machine operators has long been suspected to be a cause of injuries. There are, now, guidelines, standards, and proposed legislation intended to protect workers from excessive exposure to whole body vibration and mechanical shock. Seating standards seek to provide a cushioning shock to the body. This multidisciplinary conference will provide a unique opportunity to exchange information on the potential for injury from whole body vibration and mechanical shock.

This conference will specially emphasise preventative measures and the promotion of the transfer of knowledge from the laboratory to the field. The official language of the conference will be English.

The programme will include submitted papers, posters, exhibits, and discussion periods.

Studies to be presented may include:

- Epidemiology
- Pathological investigations
- Biodynamic measurements
- Models and analogues
- Measurements of exposure
- Other preventative measures
- Guidelines and standards
- Compensation and legal implications
- Review papers

Conference secretary: Studio Societa', Viale Resistenza 6, 52045 Foiano della Chiana,
Arezzo, Italy. Phone 0039 0575 649099; fax 0039 0575 642728; socrate@solid.it

www.oem.com
Health risks from exposure to cadmium in soil

ROBIN PHILIPP and ANTHONY HUGHES

Occup Environ Med 2000 57: 647-648
doi: 10.1136/oem.57.9.647

Updated information and services can be found at:
http://oem.bmj.com/content/57/9/647

These include:

References
This article cites 17 articles, 2 of which you can access for free at:
http://oem.bmj.com/content/57/9/647#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/