Point source sulphur dioxide peaks and hospital presentations for asthma

A Michael Donoghue, Mervyn Thomas

Abstract

Objective—To examine the effect on hospital presentations for asthma of brief exposures to sulphur dioxide (SO$_2$) (within the range 0–8700 µg/m3) emanating from two point sources in a remote rural city of 25 000 people.

Methods—A time series analysis of SO$_2$ concentrations and hospital presentations for asthma was undertaken at Mount Isa where SO$_2$ is released into the atmosphere by a copper smelter and a lead smelter. The study examined 5 minute block mean SO$_2$ concentrations and daily hospital presentations for asthma, wheeze, or shortness of breath. Generalised linear models and generalised additive models based on a Poisson distribution were applied.

Results—There was no evidence of any positive relation between peak SO$_2$ concentrations and hospital presentations or admissions for asthma, wheeze, or shortness of breath.

Conclusion—Brief exposures to high concentrations of SO$_2$ emanating from point sources at Mount Isa do not cause sufficiently serious symptoms in asthmatic people to require presentation to hospital.

(Keywords: SO$_2$; short term exposure; asthma)

Short term exposures to high concentrations of SO$_2$ within experimental chambers are known to provoke bronchoconstriction in normal subjects. The same response occurs in asthmatic people at lower concentrations especially if they are exercising at the time. The response is typically maximal within 5 minutes and resolves spontaneously after 30–60 minutes. It is prevented and relieved by inhaled β_2 agonists. Although individual exposure-response characteristics have been well defined under experimental conditions, the effect on populations of brief exposures to high concentrations of SO$_2$ emanating from point sources has not been examined. This study is a time series analysis of 5 minute block mean SO$_2$ concentrations and hospital presentations for asthma, wheeze, or shortness of breath in the city of Mount Isa, where SO$_2$ is released into the atmosphere by a copper smelter and a lead smelter. Mount Isa is a remote rural city in north west Queensland with a population of about 25 000 people. The smelter emissions are dispersed away from the city by two tall stacks, and an air quality control system is used to minimise ground level exposures of SO$_2$ during adverse meteorological conditions. Continuous data from 10 SO$_2$ monitors located on two concentric rings within the city, and meteorological forecasts are used to detect and predict rising exposures. The copper smelter, which produces most of the SO$_2$, is shut down if the short term limits set by the United States Environmental Protection Agency are likely to be approached (3 hour running average of 1300 µg/m3 and 24 hour running average of 365 µg/m3). The resultant exposure to SO$_2$ in the city is characterised by a very low background concentration (mean annual concentration of <20 µg/m3) with occasional peaks of up to 8700 µg/m3. Observations of the continuous chart recordings show that these peaks rarely persist longer than 5 minutes. During the 3 year study period, the peak SO$_2$ concentration recorded anywhere in the city did not exceed 800 µg/m3 on 48.3% of days. This concentration has been reported as the lowest required to double airway resistance in the most sensitive of male asthmatic subjects exercising during experimental chamber studies.

Method

The 3 year period from 1 July 1993 to 30 June 1996 was studied.

EXPOSURE DATA

For each day of the years studied, the maximum 5 minute block mean concentration of SO$_2$ recorded by any of the 10 monitors was determined. Computer recorded 5 minute block averages were available for 1070 days (97.6%). Visual inspection of the original chart recordings yielded peak value data for the missing days.

RESPONSE DATA

Deidentified data were requested from Mount Isa Base Hospital on presentations for asthma. For each day of the years studied, the number of people presenting to the emergency department complaining of asthma, wheeze, or shortness of breath was determined from the attendance records. The number of these people who were then admitted to hospital was also determined. All of these patients were included in the study, regardless of age, sex, ethnicity, smoking status, or place of usual residence. Response data were obtained for every day studied.

STATISTICAL ANALYSIS

Descriptive statistics for numbers of patients presenting, and numbers admitted were calculated, in aggregate and for each month.
Point source sulphur dioxide peaks and hospital presentations for asthma

233

asthma presentations or admissions and SO2
whether or not there was a relation between
second analysis considered the question of
even if it is due to a shared seasonality. The
SO2 and asthma presentations or admissions—
issue of whether there was any relation between
ances were therefore not inflated by a
evidence of extra-Poisson variability, and vari-
regression and the analysis of covariance, to
models (GLMs).10

Assumptions of the GLMs and GAMs. Devi-
ations were calculated and plotted against predicted values. Kernel density esti-
residuals12 were calculated and plotted

All analyses were based on the assumption
that responses in successive days were statisti-
dependently (conditional on SO2 concen-
trations). Dependence between successive days
is likely to inflate the variance of parameter
estimates, leading our analysis to overestimate
the evidence of any SO2 exposure effect
on asthma. The independence assumption was
checked informally, using time series analysis
of deviance residuals.

The S Plus software package was used for all
statistical analyses.

Results

Descriptive statistics

Table 1 shows the mean and variance of daily
presentations and daily admissions by month.
The variance for each month was nearly equal
to the mean—which is consistent with a
Poisson distribution for each month.

Table 2 is a frequency distribution showing
the number (%) of days for each month of the
year on which the maximum 5 minute block
average SO2 concentration exceeded three levels (>800 µg/m³, >2145 µg/m³, >5434 µg/m³).

The GLM included a covariate for SO2 con-
centration and a 12 level factor for month. Sul-
phur dioxide by month interactions were also
fitted. As the concentration of SO2 is itself sea-
onal, two forms of analysis were conducted. In
the first form of analysis SO2 concentration was
fitted before month. In the second analysis the
SO2 effect was fitted after month. There was no
evidence of extra-Poisson variability, and vari-
ances were therefore not inflated by a
heterogeneity factor.

Informally the first analysis considered the
issue of whether there was any relation between
SO2 and asthma presentations or admissions,
even if it is due to a shared seasonality. The
second analysis considered the question of
whether or not there was a relation between
asthma presentations or admissions and SO2
over and above the fact that both change
seasonally.

The possibility of a non-linear dependence
of asthma presentations or admissions on SO2
was investigated with generalised additive
models (GAMs).11 These methods may be
thought of as a further generalisation of GLMs.
As well as accommodating non-normal error
distributions, GAMs may be used to include
non-linear and non-parametric relations. The
dependent variable is constrained to vary
smoothly with the predictor variables, but the
precise form of the dependence is chosen by
the data. In our analyses the effect of SO2 con-
centration was modelled by a smoothing spline
with about four degrees of freedom.

Graphical diagnostics were used to check
the assumptions of the GLMs and GAMs.

The S Plus software package was used for all
statistical analyses.

Analysis for Presentations

Poisson regression

The analysis of deviance for the GLM is shown
in table 3. The test for a relation with SO2, in
the absence of a month effect had a χ² statistic
of 19.86 on 1 degree of freedom and an infinites-
imal p value—indicating strong evidence for a

Table 1 Mean and variance of daily presentations at
Mount Isa Base Hospital by month of the year (data for
each month are aggregated over all 3 years of the study)

<table>
<thead>
<tr>
<th>Month</th>
<th>Presentations</th>
<th>Admissions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Variance</td>
</tr>
<tr>
<td>Jan</td>
<td>1.172</td>
<td>1.144</td>
</tr>
<tr>
<td>Feb</td>
<td>1.494</td>
<td>1.991</td>
</tr>
<tr>
<td>Mar</td>
<td>1.591</td>
<td>1.309</td>
</tr>
<tr>
<td>Apr</td>
<td>1.209</td>
<td>1.331</td>
</tr>
<tr>
<td>May</td>
<td>1.667</td>
<td>1.812</td>
</tr>
<tr>
<td>Jun</td>
<td>1.567</td>
<td>1.597</td>
</tr>
<tr>
<td>Jul</td>
<td>1.677</td>
<td>2.199</td>
</tr>
<tr>
<td>Aug</td>
<td>2.043</td>
<td>2.563</td>
</tr>
<tr>
<td>Sep</td>
<td>1.633</td>
<td>2.055</td>
</tr>
<tr>
<td>Oct</td>
<td>1.226</td>
<td>1.481</td>
</tr>
<tr>
<td>Nov</td>
<td>1.000</td>
<td>1.483</td>
</tr>
<tr>
<td>Dec</td>
<td>1.151</td>
<td>1.586</td>
</tr>
</tbody>
</table>

Table 2 A frequency distribution (n (%)) of days for each
month of the year on which the maximum 5 minute block
average sulphur dioxide concentration exceeded the stated
concentrations (data for each month are aggregated over all
3 years of the study)

<table>
<thead>
<tr>
<th>Month</th>
<th>>800 µg/m³</th>
<th>>2145 µg/m³</th>
<th>>5434 µg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>74 (79.6)</td>
<td>58 (62.4)</td>
<td>33 (35.5)</td>
</tr>
<tr>
<td>Feb</td>
<td>46 (54.1)</td>
<td>39 (45.9)</td>
<td>13 (15.3)</td>
</tr>
<tr>
<td>Mar</td>
<td>31 (33.3)</td>
<td>18 (19.4)</td>
<td>5 (5.4)</td>
</tr>
<tr>
<td>Apr</td>
<td>27 (30.0)</td>
<td>12 (13.3)</td>
<td>6 (6.6)</td>
</tr>
<tr>
<td>May</td>
<td>25 (26.9)</td>
<td>15 (16.1)</td>
<td>2 (2.2)</td>
</tr>
<tr>
<td>Jun</td>
<td>36 (40.0)</td>
<td>26 (28.9)</td>
<td>7 (7.8)</td>
</tr>
<tr>
<td>Jul</td>
<td>42 (45.2)</td>
<td>32 (34.4)</td>
<td>15 (16.1)</td>
</tr>
<tr>
<td>Aug</td>
<td>22 (23.7)</td>
<td>16 (17.2)</td>
<td>6 (6.5)</td>
</tr>
<tr>
<td>Sep</td>
<td>58 (64.4)</td>
<td>52 (57.8)</td>
<td>17 (18.9)</td>
</tr>
<tr>
<td>Oct</td>
<td>64 (68.8)</td>
<td>58 (62.4)</td>
<td>21 (22.6)</td>
</tr>
<tr>
<td>Nov</td>
<td>71 (78.9)</td>
<td>64 (71.1)</td>
<td>21 (23.3)</td>
</tr>
<tr>
<td>Dec</td>
<td>72 (77.4)</td>
<td>64 (68.8)</td>
<td>29 (31.2)</td>
</tr>
</tbody>
</table>

Table 3 Analysis of deviance for GLM fitted to asthma
presentations at Mount Isa Base Hospital (the p value
represents the tail area probability of a χ², variate equal to
deviance, with the given number of degrees of freedom)

<table>
<thead>
<tr>
<th>Effect</th>
<th>Df</th>
<th>Deviance</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month</td>
<td>11</td>
<td>60.821</td>
<td>0.000</td>
</tr>
<tr>
<td>SO2, ignoring month</td>
<td>1</td>
<td>19.861</td>
<td>0.000</td>
</tr>
<tr>
<td>SO2, allowing month</td>
<td>1</td>
<td>4.461</td>
<td>0.035</td>
</tr>
<tr>
<td>Month by SO2 interaction</td>
<td>11</td>
<td>12.535</td>
<td>0.325</td>
</tr>
</tbody>
</table>
relation between SO2 and presentations. The regression coefficient, however, was negative—indicating that high SO2 values were associated with lower numbers of people presenting with asthmatic symptoms. There is clear evidence of a month effect, and the apparent relation between SO2 and presentations is almost certainly due to a shared seasonality. When month was fitted, the addition of SO2 to the model was just significant. The parameter estimate for SO2 in the presence of a month effect, however, was -2.42×10^{-5} (SE 1.115×10^{-5}). This indicated a negative relation between SO2 concentrations and presentations. Clearly fitting month as a factor has not entirely removed the effect of shared seasonality.

The month by SO2 interaction was not significant, and there was no evidence that the slope of the relation between SO2 and presentations changes with month.

This analysis provided no evidence of any tendency for peak SO2 concentrations to be associated with higher incidence of presentations.

Non-linear response to SO2
The GAM model (including a smoothing spline to fit SO2) was compared with a GLM model (including a linear relation between SO2 and presentations) with an approximate likelihood ratio χ^2 test. The month effect was included in both models. The value of χ^2 was 1.6 on 3 degrees of freedom; the p value was 0.639. The departure from linearity was not significant—indicating that the GLM analysis was satisfactory. A partial residual plot for the SO2 term in the GAM is shown in figure 1. This plot indicates a weak negative linear relation between SO2 and presentations.

![Figure 1](image1.png)
Figure 1 Generalised additive model fit of presentations to SO2 concentrations. The generalised additive model includes a smoothing spline response for SO2, and a term representing the effect of month. The solid line shows a smoothing spline fit to the partial residual, and the broken lines represent plus or minus 2 SE. There is no strong evidence for any relation, and the data are not consistent with a positive trend in presentations with SO2 concentrations.

![Figure 2](image2.png)
Figure 2 Generalised additive model fit of admissions to SO2 concentrations. The generalised additive model includes a smoothing spline response for SO2, and a term representing the effect of month. The solid line shows a smoothing spline fit to the partial residual, and the broken lines represent plus or minus 2 SE. There is no strong evidence for any relation, and the data are not consistent with a positive trend in admissions with SO2 concentrations.

Model diagnostics
Analysis of the variance residuals and predicted values suggest the GLM is appropriate.

Analysis for admissions

Non-linear response to SO2
The analysis of deviance for the GLM is shown in table 4. When the effect of SO2 was considered in the absence of a month effect, the χ^2 statistic was 7.72 on 1 degree of freedom, indicating a strong relation between admissions and SO2. The regression coefficient, however, was negative—indicating that high SO2 concentrations were associated with a lower incidence of admissions related to asthma. This was again an artefact caused by a shared seasonality in SO2 and asthma admissions. There is clear evidence of a month effect. When month was included in the model there was no further evidence for an effect of SO2 concentrations. Neither was there any evidence that the slope of the relation between SO2 and admissions changes with month.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Df</th>
<th>Deviance</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month</td>
<td>11</td>
<td>27.61</td>
<td>0.004</td>
</tr>
<tr>
<td>SO2, ignoring month</td>
<td>1</td>
<td>7.72</td>
<td>0.005</td>
</tr>
<tr>
<td>SO2, allowing for month</td>
<td>1</td>
<td>1.28</td>
<td>0.257</td>
</tr>
<tr>
<td>Month by SO2 interaction</td>
<td>11</td>
<td>9.18</td>
<td>0.605</td>
</tr>
</tbody>
</table>

Table 4 Analysis of deviance for GLM fitted to asthma admissions at Mount Isa Base Hospital (the p value represents the tail area probability of a χ^2 variate equal to the deviance, with the given number of degrees of freedom)

Discussion
This study adopted an analytical framework based on Poisson distributed responses, which adequately reflected the distributional properties of small daily counts. Seasonal effects were examined with the models described, and a clear relation between asthma and month was established, with the winter months showing more presentations, and more admissions. A slight negative relation between presentations,
and peak SO\textsubscript{2} concentrations was found and was an artefact of a shared seasonality—which has not been completely accounted for by fitting month. No relation between admissions and peak SO\textsubscript{2} concentrations was found. Although the assumption of conditional independence of successive days might be challenged, the likely impact of error in this assumption would be to inflate the evidence for a relation between SO\textsubscript{2} and asthma presentations or admissions. As the study has shown no evidence of such a relation, our assumption was innocuous. In particular, there was no reason to consider more complex models that were based on correlations between successive days.

The exposure data consisted of the highest daily computer recorded 5 minute block mean from all 10 monitors. The reason we selected the 5 minute sample period was that we were specifically looking for responses to brief peaks. Experimental chamber studies indicate that exposure concentration is the most important determinant of responses, and only a brief sample period would detect the highest concentrations that occurred. In the spatial analysis, the spatial density of monitoring stations at Mount Isa was much higher than in any previous study that we are aware of. It is likely that the monitors would detect most of the peaks occurring anywhere in this small city. Conducting subanalyses at each of the locations could be done, but would greatly increase the complexity of the study. All 10 monitors are located within the city, so they would not have registered SO\textsubscript{2} concentrations in unoccupied areas. Exposure data were obtained for every day of the study period for all 10 monitors.

Other pollutants such as particulates, ozone, and oxides of nitrogen were not studied. If they modified the effect of SO\textsubscript{2} however, they must have been protective, given that the study outcome was negative. We are not aware of any evidence that these other pollutants reduce exacerbation or severity of asthma. We do not, therefore, think that they need to be considered specifically for the effect of SO\textsubscript{2} on asthma.

Response data were also obtained for every day of the 3 year study period. As Mount Isa Base Hospital is the only hospital in the city, and the closest town is >100 km away, it seems unlikely that patients would have presented to another hospital. The response measures of the study were dependent on declarations of asthma, wheeze, or shortness of breath on arrival at the emergency department. It is likely that most people presenting with asthma would declare one of these three entities, but it is also possible that patients presenting with conditions other than asthma may declare wheeze or shortness of breath. The most common conditions in this category would be chronic obstructive Airways disease and left ventricular failure. This is a weakness of the study, although it is likely that those with chronic obstructive Airways disease would be affected by SO\textsubscript{2} in a similar fashion to asthmatic subjects, and may also have coexisting asthma.

A lagged response was not investigated because bronchospasm in response to SO\textsubscript{2} is known to be immediate and of short duration, typically 30–60 minutes.1, 7 There have been several time series analyses of hospital presentations for asthma relative to pollution by SO\textsubscript{2} in air.13–27 They have been fairly consistent in showing no positive temporal association.13–22 However, they have all investigated diffuse rather than point source pollution, characterised by relatively stable and low concentrations of SO\textsubscript{2}. Our study has examined the effect of brief peaks of SO\textsubscript{2} at much higher concentrations in a city otherwise exposed to very low concentrations. Despite these differences, we also have found no evidence of a positive relation between peak SO\textsubscript{2} concentrations and hospital presentations or admissions for asthma, wheeze, or shortness of breath.

It is interesting that brief peaks of SO\textsubscript{2} at concentrations known to provoke bronchoconstriction in experimental chamber studies of asthmatic subjects5–6 are not associated with increased hospital presentations for asthma, wheeze, or shortness of breath. It is possible that asthmatic people may experience symptoms in response to SO\textsubscript{2} peaks which are sufficiently brief and minor that they do not require hospital attendance. Given the short duration of response to SO\textsubscript{2} it is possible that its reversibility with inhaled \(\beta\textsubscript{2}\) agonists1, 2 perhaps this is not surprising.

We conclude that brief exposures to high concentrations of SO\textsubscript{2} emanating from point sources at Mount Isa do not cause sufficiently serious symptoms in asthmatic people to require hospital presentation.

\begin{itemize}
\item 15 Goldstein IF, Dulberg EM. Air pollution and asthma: search for a relationship. \textit{Journal of the Air Pollution Control Association} 1981;31:570–6.
\end{itemize}
Point source sulphur dioxide peaks and hospital presentations for asthma.

A M Donoghue and M Thomas

Occup Environ Med 1999 56: 232-236
doi: 10.1136/oem.56.4.232

Updated information and services can be found at:
http://oem.bmj.com/content/56/4/232

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/