Preventing commercial fishing deaths in Alaska

Jennifer M Lincoln, George A Conway

Abstract

Methods—Comprehensive surveillance of deaths in commercial fishing was established by our office during 1991 and 1992 for Alaska. Demographic data and data on risk factors and incidents were compiled and analysed for trend.

Results—During 1991–8, there was a significant (p<0.001) decrease in deaths in Alaska related to commercial fishing. Although drownings from fishermen falling overboard and events related to crab fishing vessels (often conducted far offshore and in winter) have continued to occur, marked progress (significant downward trend, p<0.001) has been made in saving the lives of people involved in vessels capsizing and sinking.

Conclusions—Specific measures tailored to prevent drowning associated with vessels capsising and sinking in Alaska’s commercial fishing industry have been successful. However, these events continue to occur, and place fishermen and rescue personnel at substantial risk. Additional strategies must be identified to reduce the frequency of vessels capsising and sinking, to enable parallel improvements in the mortality among crab fishermen, and to prevent fishermen falling overboard and drownings associated with them.

Keywords: commercial fishing; drowning; cold water

Working conditions in the Alaska commercial fishing industry are very hazardous, compounded by isolated fishing grounds, seasonal darkness, cold waters, high winds, icing, and brief fishing seasons. In the early 1990s, this setting resulted in unacceptably high occupational death rate, 200/100 000/year for the 2 year period 1991–2, for Alaska’s commercial fishermen. Over 90% of these deaths were from drowning, presumed drowning, or drowning plus hypothermia, in association with ships capsising or sinking or with falls overboard.

Several countries have reported similarly high mortalities related to fishing, also primarily from cold water drowning—for example, Iceland experienced a fishing related death rate of 89.4/100 000/year from 1966–86. Safety programmes implemented by different countries vary, focusing on vessel quality, licensing operators, staffing standards, and safety training. In the United Kingdom, comprehensive regulations implemented in 1975 include inspections of fishing vessels, personnel training, staffing, and watchkeeping requirements. Research from the United Kingdom has shown that human error is a common causative factor among fishing incidents. The Canadian commercial fishing industry operates in cold waters and has fisheries similar to the northern United States fishing industry. Canada experienced high mortalities, 46/100 000/year for the period 1975–83. In the mid-1980s, Canada examined the deaths in their fishing industry and developed many safety standards that have been implemented, including: (a) requiring safety training to obtain a commercial fishing licence, (b) increasing public awareness programmes targeting high risk fisheries, (c) inspecting fishing vessels <15 gross tonnes, and (d) requiring the annual submission of self inspection checklists as a prerequisite for licensing fishing vessels. Although rates of non-fatal injuries associated with vessel emergencies and workplace hazards continue to occur at about the same rate as previously, deaths have generally been reduced.

Throughout the 1970s and 1980s, Alaska experienced a boom in its commercial fishing industry. By the mid-1980s, it had become clear that deaths related to commercial fishing were the principal category in Alaska’s very high occupational death rate. Alaska had the highest state specific occupational death rate in the 10 year period 1980–9, 34.8 deaths/100 000 workers/year, nearly five times the annual average for the entire United States (7.0/100 000). During 1982–7, more than 20 commercial fishing deaths a year occurred in Alaska, versus a mean national annual total of 108 deaths in the commercial fishing industry. Another study identified 31 deaths among Alaskan fishermen a year during 1980–8. The hazards of commercial fishing captured the attention of the United States Congress and led to the enactment of the Commercial Fishing Industry Vessel Safety Act of 1988. During 1990–5, the Commercial Fishing Industry Vessel Safety Act of 1988 required fishing vessels to begin carrying specific safety, survival, and fire fighting equipment, and required crew members to train in first aid and emergency drill.

Methods

In 1991, we established comprehensive surveillance for commercial fishing deaths in Alaska with United States Coast Guards (USCG) reports, our own on site investigations and interviews of survivors, National Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Safety Research, Alaska Field Station, Anchorage, AK, USA J M Lincoln G A Conway

Correspondence to: Jennifer M Lincoln, 4230 University Dr, 310, Anchorage, AK 99508, USA. Telephone 001 907 271 2382; fax 001 907 271 2390; email jwx7@cdc.gov

Accepted 22 April 1999
Transportation Safety Board (NTSB) preliminary and final investigative reports, Alaska State Trooper reports, medical examiner reports, death certificates, and local news media reports. We collected and analysed information on deaths related to fishing that occurred from 1991 to 1998, including vessel location, fishery in which the vessel was operating, circumstances, demographic information for victims, and survival equipment used. Death rates were classified as being either vessel related events (capssings, sinkings, or missing vessels), falls overboard, diving related deaths, or deck injuries—for example, being crushed by crab pots or falling through hatchways. Deaths were calculated for each type of fishery by estimating its workforce at the time of the fatal event.10 11 Cross tabular and statistical analyses for trend were conducted with Paradox (version 7 (computer program), windows version. Borland, 1995) and Epi-Info (version 6 (computer program), MS-DOS version, Atlanta (GA) Centers for Disease Control and Prevention, 1994) analytical software.

Results

From 1991 to 1998, 522 occupational deaths occurred in Alaska. Commercial fishermen made up 162 (31%) of these deaths. Given the mean full time equivalent for the Alaska commercial fishing workforce of 17 400,1 this is equivalent to a rate of 116/100 000 worker deaths/year. This death rate has decreased since that of 1991–2 (200/100 000/000/year), however, it is still 26 times the overall United States occupational death rate of 4.4/100 000/year.12

The death rates among fishermen varied considerably by type of fishery: shellfish (primarily crab) had the highest (275/100 000/000/year), then herring (250/100 000/000/year), and halibut (92/100 000/year, fig 1). Fisheries differ in geographic location of fishing grounds, type of harvesting equipment and techniques, time of year, and duration of seasons. Crabbing, a shellfish fishery, is particularly hazardous, because harvesting of crab species in Alaska generally takes place during rough weather. Also, the equipment used in crabbing includes large steel cages (pots), each of which weighs up to 800 pounds (empty).

Most deaths related to fishing occur during the months when the greatest number of fishermen are working, particularly in near shore fisheries—for example, salmon and herring—April to September (84, 52%). There is also a peak in reported deaths in the period November to February (66, 41%), when winter crab fisheries open in the Bering Sea. Over half of all reported deaths related to fishing (103, 64%) occurred in the Bering Sea, Aleutian/Pribilof, or southeast Alaska areas.

Most (142, 88%) of the fishermen who died drowned or died from hypothermia, the result of vessel related events (101, 71%), falls overboard (33, 23%), diving incidents (5, 4%), or another event (3, 2%). Other deaths were due to deck injuries (15, 9%), or some other event (4, 2%). Of 101 deaths in vessel related events, the largest proportion (45, 45%) of fishermen were participating in the shellfish fishery. Of those falling overboard and drowning, 16 (48%) were also participating in the shellfish fishery. Deaths from falling overboard were categorised by cause of immersion: entanglement in net or line (11, 33%), unobserved fall (victim missing from vessel) (7, 21%), observed fall (9, 27%), or being washed or blown into the water (6, 18%). None of these workers were wearing a personal flotation device.

Of the 50 fishermen who drowned in vessel related events and for whom use of a personal flotation device was available, 36 (72%) were documented not to have been wearing any type of personal flotation device, whereas 14 (28%) were wearing such devices. (For 51 fishermen in vessel related events, it is unknown whether they were wearing any type of personal flotation device.) Thus, odds ratio calculation shows that survivors of these vessel related events in which at least one person drowned were 7.5 times (95% confidence interval (95% CI) 2.72 to 21.12) more likely to have been wearing such devices. (For 51 fishermen in vessel related events, it is unknown whether they were wearing any type of personal flotation device.) Thus, odds ratio calculation shows that survivors of these vessel related events in which at least one person drowned were 7.5 times (95% confidence interval (95% CI) 2.72 to 21.12) more likely to have been wearing a personal flotation device than were those who died (table 1).

Forty eight per cent of the fishermen who died in Alaska during 1991–8 were not residents of Alaska for all of the year, but only 33% of the fishing permits and crew licences were sold to non-Alaskan residents. Many vessels and crew members came from Washington, Oregon, and California to fish the rich Alaskan waters during specific seasons.

During 1991–8, in Alaskan crab fisheries, 34 fatal events led to 65 deaths. Of these incidents, 38% (n=13, 63% of deaths) were vessel related; most (62%) of the affected vessels were in heavy weather (winds >25 knots or waves >15 feet). Crabbing is particularly hazardous

Table 1 Use of personal flotation device (PFD) among victims and survivors involved in vessels capsizing or sinking, Alaska 1991–8, n=93

<table>
<thead>
<tr>
<th>Wearing PFD</th>
<th>Survivors</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Victims</td>
<td>Survivors</td>
<td>Total</td>
</tr>
<tr>
<td>Wearing PFD</td>
<td>14</td>
<td>32</td>
</tr>
<tr>
<td>Not wearing PFD</td>
<td>36</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>43</td>
</tr>
</tbody>
</table>

Odds ratio (95% CI)=7.5 (2.7 to 21.12).
Preventing commercial fishing deaths in Alaska

because harvesting of most crab species in Alaska takes place during the winter months due to the biological cycle of the crab. This means fishermen are often operating in conditions of cold air and water temperatures, high winds, snow, sleet, ice, short daylight hours, and high seas.

In Alaska’s salmon fishery, 25 fatal events resulted in 28 deaths; 13 incidents (16 deaths) were vessel related. However, most (62%) of the vessels were in moderately calm waters at the time of the incident. Ten of these 28 deaths related to salmon fishing resulted from falls overboard, and 46% of them occurred in calm waters.

In the period 1991–4, 11 people died in six fatal events while halibut fishing in Alaska; all incidents were vessel related and occurred in heavy seas. No deaths have been reported in the halibut fisheries since a change in the management of that fishery in 1995. Until 1995, the halibut fishery had been managed as a “derby” fishery, working for 24 hour periods on dates established months before and not changeable in response to weather conditions. In 1995 a new fishery management style, individual fishing quotas (IFQs), was implemented for the Alaskan halibut and sablefish (black cod) fisheries, assigning individual catch limits for each vessel. The fishermen now have 8 months to catch their quotas so they can often avoid harsh weather conditions if they choose to do so.

The reduction of deaths related to fishing since 1991 has been associated primarily with events that involve a vessel operating in any type of fishery other than crab (fig 2). It should be noted that in 1994 an anomaly occurred due to a reduction of crab stocks and a closure of the largest (and historically most dangerous) red king crab fishery in Alaska (according to a Fisheries Information Officer, Division of Commercial Fisheries, Alaska Department of Fish and Game, Juneau, Alaska). The processed net weight of crab was down 51% from 1992. No similar resource anomaly occurred in 1997.

Our analysis of USCG vessel casualty statistics for 1991–8 showed that vessels lost have remained relatively constant (mean 35, median 36), as did the number of workers aboard (number of people at risk, mean 106, median 106), whereas remarkable progress has been made in the case death rate (number died/number at risk) in these types of vessel related deaths. This figure has dropped from 27% in 1991 to 7% in 1998 (table 2).

Discussion
Our surveillance findings for causes of deaths related to fishing parallel those for the Alaska commercial fishing industry reported in previous reports of surveillance data, incident investigations, and survey information collected for 1980–92 by the National Institute for Occupational Safety and Health (NIOSH), USCG, National Research Council (NRC), NTSB, and the University of Alaska. Workers at greatest risk of fatal injuries related to fishing are those who fish for crab aboard unstable vessels. However, our more recent findings show consistent reduction of deaths linked to vessel related emergencies. Please note that there was no loss of life in 1998 due to vessel related incidents in the crab fishery. This frequency pattern could, however, change at any time, or regress toward the historical mean, given the extreme variations in Alaska’s climate.

The causative factors for deaths in Alaska associated with commercial fishing are complex (table 3). Gear type, fatigue, and environmental conditions also contribute to

<table>
<thead>
<tr>
<th>Year</th>
<th>Vessels lost* (n)</th>
<th>Onboard* (n)</th>
<th>Onboard killed‡ (n)</th>
<th>Case fatality rate§ (%)</th>
<th>Total fishing fatalities¶ (all causes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>39</td>
<td>93</td>
<td>25</td>
<td>27</td>
<td>36</td>
</tr>
<tr>
<td>1992</td>
<td>44</td>
<td>113</td>
<td>26</td>
<td>23</td>
<td>35</td>
</tr>
<tr>
<td>1993</td>
<td>24</td>
<td>83</td>
<td>14</td>
<td>17</td>
<td>22</td>
</tr>
<tr>
<td>1994</td>
<td>36</td>
<td>131</td>
<td>4</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>1995</td>
<td>26</td>
<td>106</td>
<td>11</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>1996</td>
<td>39</td>
<td>114</td>
<td>13</td>
<td>11</td>
<td>24</td>
</tr>
<tr>
<td>1997</td>
<td>31</td>
<td>84</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1998</td>
<td>37</td>
<td>124</td>
<td>9</td>
<td>7</td>
<td>13</td>
</tr>
</tbody>
</table>

* Sources: USCG, 17th district, fishing vessel safety coordinator
† for linear trend = 33.345; p < 0.001
‡ Case fatality rate = (number killed/number at risk) × 100 %.
§ for linear trend = 26.852; p < 0.001
¶ for linear trend = 26.852; p < 0.001

<table>
<thead>
<tr>
<th>Host or human</th>
<th>Agent or vehicle</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before event or injury</td>
<td>Captain and crew fatigue, stress, illegal drugs or alcohol, inadequate training or exposure</td>
<td>Unstable vessel, unstable work platform, complex machinery and operations</td>
</tr>
<tr>
<td>Event or injury</td>
<td>Captain and crew reaction to emergency, personal flotation device not available or not working</td>
<td>Leaning or capsised vessel, delayed abandonment, emergency circumstance not understood, man overboard</td>
</tr>
<tr>
<td>After event</td>
<td>Poor use of available emergency equipment, hypothermia, drownings, lost at sea</td>
<td>Vessel sinking, poor crew response to man overboard</td>
</tr>
</tbody>
</table>

Table 2 Case fatality rate, Alaska commercial fishing industry, 1991–8

Table 3 Features of commercial fishing injury events, Alaska

Figure 2 Deaths in commercial fishing and implementation of the Commercial Fishing Industry Vessel Safety Act 1998, Alaska, 1991–8, n=162.
Table 4 Requirements of the Commercial Fishing Industry Vessel Safety Act of 1988 (implemented 1990–5)*

<table>
<thead>
<tr>
<th>Event or injury</th>
<th>Host or human</th>
<th>Agent or vehicle</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before event</td>
<td>Drills</td>
<td>Fire extinguishers or systems, fireman’s outfit or self contained breathing apparatus, high water alarms, bilge pumps or alarms</td>
<td>Navigation publications, compasses, anchors</td>
</tr>
<tr>
<td>Event or injury</td>
<td>Immersion suits, personal flotation devices</td>
<td>Distress signals, life rafts, electronic position indicating radio beacons</td>
<td>First aid kits, cardiopulmonary resuscitation and first aid</td>
</tr>
</tbody>
</table>

*Note emphasis on after incident.

Table 5 Alaska commercial fishing injury countermeasures: proposed by CDC/NIOSH Alaska

<table>
<thead>
<tr>
<th>Event or injury</th>
<th>Host or human</th>
<th>Agent or vehicle</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before event</td>
<td>Licensing of skippers, increased training on vessel stability, increased drills, develop standard operating procedures for all tasks</td>
<td>Stability and hull integrity, new vessel design standards, reassessment of stability after refitting, machine guarding, retrofitting of sponsos</td>
<td>Evaluate impact of management regimes for fisheries, no sail guidelines due to weather, development or refinement of icing nomograms</td>
</tr>
<tr>
<td>Event or injury</td>
<td>Wearing personal flotation devices, man overboard alarms, personal emergency position indicating radio beacons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>After event</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

the severity, if not the frequency, of occupational incidents.

The Commercial Fishing Industry Vessel Safety Act of 1988 emphasises the use and availability of safety equipment during and after an emergency incident at sea (table 4). The findings presented here show considerable reductions in deaths in some sectors of this industry, but show persistent problems in other areas. We have recommended augmenting the currently standard approach to minimising the deaths associated with commercial fishing by preventing such emergency incidents in the first place, as well as preparing workers in advance on how to react to such emergencies if they should occur. The critical aetiologic factors that must be considered for definitive, primary prevention in this industry are vessel stability and hull integrity to keep vessels afloat, licensing and training of operators and crew to ensure a minimum level of competency, management regimes, avoidance of the most harsh sea and weather conditions, and avoidance of falls overboard (table 5). Our detailed set of recommendations, from which this report derives, has been published elsewhere11 (a copy of this report can be found on the NIOSH website: www.cdc.gov/niosh/homepage.html).

The impressive progress made during the 1990s in reducing mortality from incidents related to fishing in Alaska has occurred largely by reducing deaths after an event has occurred, primarily by keeping fishermen who have evacuated capsize or sinking vessels afloat and warm (using immersion suits and life rafts), and by being able to locate them readily, through electronic position indicating radio beacons. All of these regulations required by the Commercial Fishing Industry Vessel Safety Act 1988 were implemented in 1990–5.

The interventions implemented over the past decade to prevent loss of life among Alaskan fishermen have been successful. However, the continuing pattern losing 25 to 45 vessels every year and about 100 people who must be rescued each year from cold Alaskan waters is unacceptable. Successful rescue is still dependent on the expertly trained personnel of the USCG search and rescue operations, and such efforts can be hindered by the harshness of seas and the weather.18 Furthermore, the people involved in USCG search and rescue operations are themselves at considerable risk of injury or death during these rescue attempts.

Effective surveillance and interventions of mortality in Alaska related to commercial fishing, historically the worst in the United States, should provide a useful paradigm and productive venue for prevention of similar deaths throughout the world. The substantial progress made to date in Alaska’s most hazardous industry, through the thoughtful application of the public health prevention model, as well as the incorporation of new technologies and comprehensive training, should encourage others to try similar approaches elsewhere and in response to other problems. Building further on the progress already made in preventing deaths in the historically dangerous occupation of fishing could lead to much safer working conditions for commercial fishermen.

We thank the following people and agencies for their assistance in preparing this document: Linda Ashley, NIOSH Alaska Field Station; LT Alan Blume, USCG Anchorage Marine Safety Office (MSO); Jerry Dougan, Director, AMSEA; Sue Logan, USCG 17th District, Juneau; Mike Klatt, NIOSH, Alaska Field Station; Charlie Medlisscott, USCG Anchorage MSO; Sharon Smith, NIOSH Alaska Field Station; and Captain Ed Thompson, USCG Anchorage MSO. We also acknowledge the sharing of data and background information by the following agencies: Alaska Commercial Fisheries Entry Commission, Alaska Department of Fish and Game, Alaska Department of Health and Social Services Bureau of Vital Statistics, Emergency Medical Services, and Section of Epidemiology, Alaska Department of Labor, Alaska Marine Safety Education Association, Alaska State Troopers, Federal Occupational Safety and Health Administration, National Marine Fisheries Service, National Transportation Safety Board, National Weather Service, North Pacific Fishery Management Council, University of Alaska, USCG 17th District.

Rejected manuscripts

From February 1994, authors whose submitted articles are rejected will be advised of the decision and one copy of the article, together with any reviewer’s comments, will be returned to them. The Journal will destroy remaining copies of the article but correspondence and reviewers’ comments will be kept.
Preventing commercial fishing deaths in Alaska.

J M Lincoln and G A Conway

Occup Environ Med 1999 56: 691-695
doi: 10.1136/oem.56.10.691

Updated information and services can be found at: http://oem.bmj.com/content/56/10/691

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/