Clearance of man made mineral fibres from the lungs of sheep

A Dufresne, G Perrault, H Yamato, S Massé, R Bégìn

Abstract

Objectives—To compare the clearance rate, the related pathology, and the chemical and morphological changes of three man made mineral fibres (MMMFs) in the sheep model of pneumoconiosis.

Methods—Fibrous particles were extracted from lung parenchyma and analysed by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS).

Results—The concentration of MMMF11, MMMF21, refractory ceramic fibre (RCF-1), and crocidolite asbestos fibres decreased with time according to a slow and a fast kinetic component. There was a statistical difference in the four regression lines as a function of time and the type of fibres (p<0.001). The diameter of MMMFs decreased during the course of the time, whereas the crocidolite fibres did not seem to show any change. There was a statistical difference in the four regression lines as a function of time (p<0.037) and type of fibres (p<0.001). Ferruginous bodies were counted in the 40 sheep for which the latency period was 2 years. No typical ferruginous bodies were found in the groups exposed to MMMFs. The geometric mean concentration of asbestos bodies in the group exposed to crocidolite was 2421 bodies/g lung tissue (95% CI 385 to 15260).

Conclusions—The number of initially retained fibres decreased with time according to a slow and a fast kinetic component. MMMF11 and MMMF21 have similar clearance, faster than RCF-1 and crocidolite. The geometric mean diameter and length of MMMF decreased with time, but crocidolite did not. After 2 years in the sheep tracheal lobe, ferruginous bodies were not found in all three MMMF groups but were substantial in the crocidolite group. Clearance is thought to proceed through dissolution and macrophage translocation.

Keywords: man made mineral fibres; retention in lung

Most of the concern about the potential hazards of respirable fibres has its origin from the so called “fibre carcinogenesis theory” in which morphological variables as well as biopersistence confer toxicological properties to these fibres. Because man made mineral fibres (MMMFs) contain fibres that can be inhaled and deposited within the lungs, concerns have been stressed about their potential health hazards. As a mechanism of action for any fibre has yet to be specifically identified, it is often anticipated that differences in toxicity of fibres of similar geometry are primarily related to biopersistence, which includes fibre solubility. Animal experiments are an interesting option to test the toxicity and evaluate the biopersistence of MMMFs in the lung.

The first toxicological assays of MMMFs gave different results depending upon the way the fibres were delivered into the lungs (inhalation or intratracheal or intraperitoneal instillation). Inhalation assays did not show a significant excess of lung cancer or mesothelioma whereas the instillation of fibres in rat pleura or peritoneum produced a significant excess of mesothelioma. Recently, significant adverse health effects were produced by chronic inhalation, with large doses of a refined fraction of refractory ceramic fibres (RCFs) whereas vitreous fibres did not show any significant increase of lung tumour or fibrosis.

Studies which have investigated the solubility and the physical durability of fibres showed that MMMFs had half lives shorter in animal models than amphibole asbestos fibres. It was also found that the biopersistence of fibres is a complex phenomenon and that many questions remain without answers or need to be consolidated with animal models other than the rat or hamster. One of these questions relates to the phenomenon of transformation (change in the morphology and in the chemical composition) when the fibre is stored in human lungs. Indeed, a lung concentration study reported that the only markers of the exposure were the siliceous fibres found at low concentration in the lungs of the exposed workers. The authors hypothesised that the absence of the original fibres in the lung was caused by the fact that these fibres were not respirable or that the fibres did not survive in the lung environment.

To test these hypotheses, we designed a long term animal study with the sheep model of pneumoconiosis. The main advantage in using sheep is that their lungs are about 60%–70% the size of the human lungs; clinical evaluation can be performed exactly as it is performed for humans and diseases related to fibrotic dusts such as asbestos, quartz, and silicon carbide fibres, which are found in humans can be reproduced in the sheep lungs. Overall, physiological conditions of sheep lungs are likely to be closer to human lungs than are those of rodent lungs.
The first objective of the present study was to compare the clearance rate of three reference samples of MMMF, a glasswool fibre (MMMF1), a rockwool fibre (MMMF2), and a ceramic fibre (RCF-1) with crocidolite asbestos fibre, as a comparison control. A single dose of each type of fibre was tested in the sheep model of pneumoconiosis. The second objective was to ascertain the pathology related to MMMFs in the sheep model for a dose that is known to produce grade 1 fibrosis (peribronchioalveolar fibrosing alveolitis) with crocidolite. The third objective was to test the hypothesis that the fibres did not survive in the lung environment by comparing the chemical and morphological nature of residual fibres.

Material and methods

ANIMALS

Two hundred and forty sheep weighing between 25 and 45 kg were used in this study. They were prepared and accustomed to the preliminary techniques as previously reported by Bégin et al (1985). All sheep were enrolled at the age of 1 year. Their health was verified by physical examination, serology test for brucellosis and Maedi visna infection, by a chest radiograph, pulmonary function tests, and a bronchoalveolar lavage. Abnormalities of one of these excluded the animal from the experimental protocol. Animals were housed in the animal care facility of Sherbrooke University and fed once a day hay and multigrain feeding and had access to water except on the day of examination. The research protocol was approved by the animal experimentation committee of Sherbrooke University.

FIBRES AND EXPOSURE

The composition and the size of the MMMF samples have been already described elsewhere. They consist of MMMF1 (fibreglass), MMMF2 (rock wool), one ceramic fibre sample, RCF-1 (kaolin based), and crocidolite asbestos fibres (fig 1) as a comparison control.

The exposure was carried out in the sheep tracheal lobe through bronchoscopic catheterisation of the tracheal lobe bronchus and slow infusion of a suspension in the lobe. For each type of fibre, the suspension consisted of 100 mg fibres in 100 ml saline.

EXPERIMENTAL DESIGN

Sheep, 10 from each group, were killed and the lungs were removed from the chest cavity at days 6, 40, 60, 180, 360, and 730. The dose and days from instillation were selected arbitrarily to reproduce the grade 1 fibrosis (peribronchoalveolar fibrosing alveolitis) with crocidolite and to allow the fibres enough time to dissolve. For each sheep, the tracheal lobe was identified and nine samples were obtained for histopathological examination. The remaining tissue was used for fibre analysis.

The lung samples were processed as routinely done for human lung tissue. Each sample was evaluated histologically for intensity and profusion of lesions to give an average qualitative evaluation of disease.

ANALYSIS OF FIBRES AND FERRUGINOUS BODIES

The number and size distribution of fibres in lung tissue were measured as follows. The analytical transmission electron microscopy

Figure 1 Transmission electron microscope view with energy dispersive spectra of MMMF1 and MMMF2, RCF-1, and crocidolite asbestos fibres.
procedures have already been described. In summary, lung tissue was digested in sodium hypochlorite solution. The suspension was filtered under vacuum on a cellulose ester membrane filter (Millipore) of 25 mm diameter and 0.45 µm porosity (10 mg for analytical transmission electron microscopic analysis) with a Millipore filtration system. The 25 mm diameter and 0.45 µm porosity membrane filter was ashed in an oxygen plasma furnace (LFE model 500, 15 ml/min of O₂, 150 W) for 4 hours. The ashes were then recovered with distilled and deionised water.

Four microscope grids were prepared from each sample by a carbon replica technique. The grids were observed in the transmission mode under a JEOL 100 CX electron microscope equipped with an x-ray energy dispersive spectrometer (EDS, PGT system IV) with an accelerating voltage of 80 kV and a magnification ×10 000. From the four grids, 60 openings (or less if 60 fibres were counted) with an area of 6400 µm² were randomly observed for fibrous particles. Each visible fibre >1 mm on the screen (1 mm=0.09 µm) and having length:diameter aspect ratio ≥3:1 was identified. Fibre types were recognised from morphological features and the EDS spectra shown in figure 1. All other fibres were classified as residual fibres. The length and diameter of all fibres were measured to the nearest 0.045 µm (1/2 mm on the screen) with two concentric circles (10 mm and 50 mm diameter) drawn on the fluorescent screen.

Lung digest filters (25 mg) were used for optical microscope analysis of ferruginous bodies and were placed on 75×38 mm microscopic glass slides and cleared with 85 ml of a mixture of 35 ml dimethylformamide, 20 ml glacial acetic acid, and 44 ml water (DMF solution) in an oven at a temperature of 65°C for about 10 minutes. The cleared filters on glass slides were then mounted with microscopical cover glass with Eukitt mounting reagent.

STATISTICAL ANALYSIS

The statistical analyses were performed with Minitab statistical software (version 11). Lung retention data were log transformed to stabilise the variance and to obtain a more symmetric distribution. The fibres that could not be detected were assigned a value of half the limit.

Table 1: Histopathological evaluation

<table>
<thead>
<tr>
<th>Days</th>
<th>MMMMF11</th>
<th>MMMMF21</th>
<th>RCF-1</th>
<th>Crocidolite</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Alveolitis, no lesion, none or few fibres</td>
<td>Alveolitis, no lesion, few fibres</td>
<td>Light alveolitis, few fibres</td>
<td>Peribronchiolar inflammatory lesions, few fibres</td>
</tr>
<tr>
<td>40</td>
<td>Alveolitis, no lesion, none or few fibres</td>
<td>Alveolitis, no lesion, notable amount of fibres</td>
<td>Alveolitis, notable amount of fibres</td>
<td>Peribronchiolar inflammatory lesions, few fibres</td>
</tr>
<tr>
<td>60</td>
<td>No lesion, none or few fibres</td>
<td>Alveolitis, no lesion, few fibres</td>
<td>Alveolitis, few fibres</td>
<td>Peribronchiolar inflammatory lesions, few fibres</td>
</tr>
<tr>
<td>180</td>
<td>No lesion, none or few fibres</td>
<td>Alveolitis, no lesion, few fibres</td>
<td>Alveolitis, few fibres</td>
<td>Peribronchiolar inflammatory lesions, few fibres</td>
</tr>
<tr>
<td>360</td>
<td>No lesion, none or few fibres</td>
<td>Alveolitis, no lesion, notable amount of fibres</td>
<td>Light alveolitis, no lesion, few fibres</td>
<td>Peribronchiolar lesions, beginning of fibrosis, notable amount of fibres</td>
</tr>
<tr>
<td>720</td>
<td>No lesion, none or few fibres</td>
<td>Alveolitis, no lesion, few fibres</td>
<td>No lesion, very few fibres</td>
<td>No significant lesion, interstitial pneumoain, few fibres</td>
</tr>
<tr>
<td>General</td>
<td>No lesion</td>
<td>Alveolitis</td>
<td>Light alveolitis</td>
<td>Inflammatory lesions</td>
</tr>
</tbody>
</table>

Figure 2: Histopathology (originally×400) of lung tissues from the tracheal lobe of sheep 6 days after intratracheal instillation. A, B, C, D are respectively from MMMMF11, MMMMF21, RCF-1, and crocidolite fibres.

of detection of the analytical method (and loge transformed). The limit of detection was 35 fibres/mg for fibres, and 20 bodies/g for ferruginous bodies. Geometric mean (GM) concentration of each fibre type was calculated from the loge concentration. For data analysis of particle size, the diameter and length of each fibre of each fibre type were loge transformed. The GM diameter and GM length of fibre type were computed for each sheep. The GM of each fibre type for each group was then calculated from these GMs of each sheep.

One way analysis of variance (ANOVA) of the log transformed concentrations was used to compare particle concentrations at days 6, 40, 60, 180, 365, and 730. The regression lines of concentrations on days were fitted by least squares. Half lives were estimated from the regression lines. Finally, possible differences in slopes according to exposure were investigated with analysis of covariance (ANCOVA).

Results

PATHOLOGY

Table 1 shows the lung pathology for each type of fibre over the time. In general, MMMF11 did not induce any lesion, MMMF21 resulted in alveolitis, RCF-1 slight alveolitis, and crocidolite fibres some inflammatory peribronchiolar lesions. Diffuse interstitial lung disease was not found on any of the groups. Figure 2 shows a representative picture of the pathology for each type of fibre at day 6.

CLEARANCE OF MINERAL FIBRES

The lung clearance of the tested fibres of all lengths and fibres >5 µm are presented in figure 3 A and B. These two parts of the figure were consistent with a fast and a slow kinetic component of the lung clearance of fibres. The half lives of each kinetic component for each type of fibre of all lengths and for fibres >5 µm are shown in tables 2 and 3 respectively. There was a significant difference in the four regression lines presented in figure 3 A as a function of time (predictor 1) and the type of fibres (predictor 2) (ANCOVA, p<0.001).

ELEMENTAL COMPOSITION OF FIBRES

An appreciable amount of the residual fibres (fig 3 C) had a chemical composition showing only an Si peak or Si with an alkali or alkali earth element for the MMMF11 and MMMF21 fibres. The leaching process of the RCF-1 fibres seemed to start with the leaching of the element Ti and Fe although at 365 days or 730 days some fibres were still showing the presence of the two elements. The peak ratio of the Al:Si did not seem to change much in the course of time. However, an exhaustive statistical analysis of the ratio of Al:Si would be needed from many RCF-1s to verify this assertion. The ratio of the elements from the crocidolite fibres did not seem to change at all in the course of time.

MORPHOLOGY OF FIBRES OVER TIME

Figure 4 A–D shows the change in the mean diameter and length for all tested and residual fibres during the course of time. Although the crocidolite fibres did not seem to show any change in the size of their diameter, the diameter of the MMMFs decreased during the course of time. The mean diameter showed a significant difference in the four regression lines as a function of the time (predictor 1, ANCOVA, p=0.037) and the type of fibres (predictor 2, ANCOVA, p<0.001). The MMMF21s were longer than any other type of fibre and the crocidolite fibres were always the shortest. There was a significant
difference for the length between each type of fibre but there was no significant difference in the length during the time course (p>0.1). The residual fibres had smaller diameter and were shorter than the tested fibres at any point in time of the assay.

FERRUGINOUS BODIES
Ferruginous bodies were counted among the 40 sheep for which the latency period was 2 years. No typical ferruginous bodies were found in the groups exposed to MMMF11, MMMF21, and RCF-1. The geometric mean concentration of asbestos bodies in the group exposed to crocidolite fibres was 2421 bodies/g lung tissue (95% CI of GM 385 to 15 260).

Discussion
The sheep model has been useful in studying the pathophysiology of interstitial lung disease and has contributed to the study of pulmonary clearance of asbestos, free silica, silicon carbide particles, and silicon carbide whiskers, despite its limitations of heterogeneous pulmonary distribution from intratracheal instillation.

PATHOLOGY
The disease process induced by exposure to fibres resulted in an interstitial reactive inflammatory alveolitis, which subsided substantially in all groups over time with peribronchiolar alveolitis persisting only in the crocidolite group after 2 years. Thus it suggests that the process of fibre clearance was not compromised by a major disease process. The clearance pattern of the sheep exposed to crocidolite was consistent with earlier experiments in the sheep model of pneumoconiosis.

FIBRE CONCENTRATION
An attempt was made to estimate the concentration of instilled fibres per unit mass. It was estimated that there were 5000–10 000 per µg MMMFs and about 1–1.5 million fibres/µg of crocidolite asbestos fibres. This property was reflected in the fibre concentration in the lungs of the differently exposed groups. As shown in figure 3 A there were 10–100 times fewer MMMFs than crocidolite fibres in the lungs at each point in time. Moreover, at 730 days, the GM concentration of all fibres was around 390 fibres/mg for MMMFs whereas it was in the range of 12 000 fibres/mg for the crocidolite fibres. Overall, these data support the results of Hesterberg et al who made similar findings with the rat model with exposure of 5 days.

HALF LIFE OF EACH TYPE OF FIBRE
Bernstein et al showed a biphasic clearance curve of soluble MMMFs after inhalation in rats. In sheep, a few points deviated from this “ideal” clearance curve in two exposed groups—for example, MMMF11 and RCF-1—that are shown in figure 3 A and B. The MMMF21 curve showed a “perfect biphasic” clearance curve. To give a better estimate of the rate of clearance, the ranges of half lives (estimated in table 2 and 3) were computed including and excluding the deviant points from the ideal curves. The inclusion or exclusion of the seemingly deviant points did not affect the final results significantly.

Moreover, the clearance half lives of our study were comparable with other studies that used intratracheal instillation or inhalation of similar types of fibres, mainly in rats (table 4). However, to be able to compare our results, it was necessary to use the same calculation methods for the regression curves that were used in each study. The half lives (T1⁄2) from a simple regression curve fitted through all the data under consideration do not differentiate between the different fibres except for two studies that have shown high values for crocidolite which are not in agreement with the sheep results. The weighted double regression half lives (W-T1⁄2) as proposed by Bernstein et al show a faster clearance of the
MMMF11 and the MMMF21 than the RCF-1 and the crocidolite.

CHANGE IN THE MORPHOLOGY OF FIBRES OVER TIME

The diameters and the lengths of the tested MMMFs were significantly different from the initial stock fibres which were reported respectively at about 1 µm and 10 µm. It should be mentioned that a notable decrease in length seemed to happen between days 365 and days 730 for MMMF21 whereas the decrease seemed to be earlier for the MMMF11 and the RCF-1. Hesterberg et al. also reported that MMMF21 exhibited the least chemical change among the MMMFs that they have tested. All these findings broadly agreed with a faster clearance of fibres >20 µm long as suggested by these findings. The residual fibres were thinner and shorter than the tested fibres and have never reached the concentration of the tested fibres. The MMMF11 and MMMF21 samples showed losses of both alkali and alkaline earth oxides with time but this was not the case for crocidolite asbestos fibres. After 2 years in the sheep lungs but they found some ferruginous bodies in one Syrian hamster exposed to RCF.

Synthesis of ferruginous bodies from refractory or vitreous fibres seems to be dependent of the animal model. Also, if the finding made with the sheep tracheal lobe can be extrapolated to human lungs, it is unlikely that ferruginous bodies from MMMFs could be used as markers of the exposure to vitreous fibres.

RESIDUAL FIBRES

The residual fibres were thinner and shorter than the tested fibres and have never reached the concentration of the tested fibres. The MMMF11 and MMMF21 samples showed losses of both alkali and alkaline earth oxides over the course of time. This loss seems to be more apparent at 40 days as appreciable amounts of siliceous fibres were then found among the residual fibres. For the purpose of a comparison, Hesterberg et al. reported that MMMF10 and MMMF22 showed significant losses of both alkali and alkaline oxides as early as 1 hour after the end of the 5 day exposure period of their rats.

Finally, if the model of the tracheal lobes of sheep can be extrapolated to human lungs, the present study supports the hypothesis that the fibres do not seem to survive in the lung environment and this would explain why mainly residues of short siliceous fibres were found which in fact were similar to those extracted from the lungs of sheep.

Conclusion

The decrease over time of the number of initially retained MMMFs was reasonably well represented by a model consisting of a slow and a fast kinetic component (biphasic kinetic) which appeared clearly for MMMF21s. The MMMF11s and MMMF21s had similar clearance, faster than RCF-1 and crocidolite. Diameter and length of MMMFs decreased with time but this was not the case for crocidolite asbestos fibres. After 2 years in the sheep tracheal lobe, ferruginous bodies coating fibres were found only in the group exposed to crocidolite. Clearance is thought to proceed through dissolution and macrophage translocation and the data on residual fibres suggested that dissolution and translocation was occurring faster for the three MMMFs studied than for the crocidolite asbestos fibres.

Table 4 Half life ($T_{1/2}$, days) of man made mineral fibres (MMMFs) in different animal models

<table>
<thead>
<tr>
<th>Sample</th>
<th>Inhalation All lengths >5 µm</th>
<th>Intratracheal instillation All lengths >5 µm</th>
<th>$T_{1/2}$ *</th>
<th>All lengths >5 µm (W-$T_{1/2}$) †</th>
<th>$T_{1/2}$ *</th>
<th>All lengths >5 µm (W-$T_{1/2}$) †</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMMMF11</td>
<td>247</td>
<td>203</td>
<td>31</td>
<td>31</td>
<td>18244, 24941</td>
<td>2841</td>
</tr>
<tr>
<td>MMMMF21</td>
<td>154</td>
<td>141</td>
<td>75</td>
<td>46</td>
<td>20343, 5441</td>
<td>54</td>
</tr>
<tr>
<td>RCF-1</td>
<td>280</td>
<td>192</td>
<td>280</td>
<td>154</td>
<td>14143, 17741</td>
<td>31643, 20042</td>
</tr>
<tr>
<td>Crocidolite</td>
<td>231</td>
<td>301</td>
<td>175</td>
<td>105</td>
<td>30141</td>
<td>1854, 69541</td>
</tr>
</tbody>
</table>

*Simple regression. †Weighted for a double regression, as reported by Bernstein et al.

Clearance of man made mineral fibres from the lungs of sheep.

A Dufresne, G Perrault, H Yamato, S Massé and R Bégin

Occup Environ Med 1999 56: 684-690
doi: 10.1136/oem.56.10.684

Updated information and services can be found at:
http://oem.bmj.com/content/56/10/684

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/