CORRESPONDENCE

Exposure to asphalt or bitumen fume and renal disease

Edbrooke—The correspondence from Dittmer and Armitage provides further support for a causal association between exposure to various hydrocarbons and the development of renal disease. Since 1912, some case reports, case-control studies, and cross sectional studies together with animal experiments have provided compelling evidence for a causative role for hydrocarbon exposure in the development of both tubular and glomerular lesions.

We now report the case of a road worker exposed to asphalt and bitumen fumes who presented in 1990 at the age of 36 with nephrotic syndrome. He was then normotensive, had proteinuria with 24 hour urinary protein of 12.2 g, showed some clinical oedema, and his renal biopsy was consistent with a diagnosis of stage 2 membranous glomerulonephritis. Later that year he presented with an unexplained deterioration in renal function. This followed several weeks of abdominal pain, and he then had haematuria without pyuria, serum creatinine of 208 compared with his previously normal value of 85 µmol/l, and a marked deterioration in his renal biopsy with 20 glomerular profiles per section and tubulointerstitial scarring occupying 40% of the biopsy.

Before developing renal disease, the patient had been employed as a road worker for more than 10 years, during which time he was repeatedly exposed to intermittent but high concentrations of asphalt or bitumen fumes. Since the diagnosis of nephrotic syndrome due to membranous glomerulonephritis, the patient stopped being exposed to asphalt and bitumen fumes. Subsequent assessments of proteinuria have shown a reduction of up to 50% from 12 to 5 g/day. However, he currently is hypertensive with serum creatinine 170 µmol/l, urea 10.4 mmol/l, serum albumin 30 mmol/l, and 24 hour urinary excretion of protein 5.0 g.

Searches of the scientific literature in 1990 and subsequently have not found any specific references to exposure to asphalt or bitumen and renal disease. We therefore investigated the issue further by means of (a) detailed fume analyses, and (b) a study of the renal health of road workers exposed to asphalt or bitumen.

It was clear from the fume analyses that exposures in this industry include a wide range of aromatic and aliphatic hydrocarbons. Time weighted average exposures ranged from 0.4 to 8.9 mg/m³ measured as total organic fume (not including inorganic particulates), but short term or peak fume exposures were as high as 300–900 mg/m³. During all his years exposed to these fumes, the patient had never been provided with or worn respiratory protective equipment.

The study of renal health included 92 people regularly exposed to asphalt or bitumen fumes as road workers, 38 hard rock quarry workers not occupationally exposed to hydrocarbons, and 43 office workers also not exposed to hydrocarbons.

Each participant was given a questionnaire which included pre-existing occupational and recreational exposures and medical history including renal disease. Urine and blood samples were collected for urinary chemistry, blood biochemistry, and microscopic analyses. Any person with an abnormal finding on blood or urine analyses were retested and examined by a nephrologist to assess the presence or otherwise of renal disease.

The criteria which determined an abnormal test result were as follows: (a) persistently raised serum creatinine >120 µmol/l; (b) persistently raised serum urea >7.5 mmol/l; (c) persistent microscopic haematuria or pyuria; (d) 24 hour urinary protein >150 mg/day; or (e) corrected creatinine clearance <90 ml/min.

The presence of renal disease was determined as pre-existing or idiopathic according to the following criteria. Pre-existing renal disease: (a) family history or history of renal disease; (b) abnormal renal ultrasound. Idiopathic renal disease: (a) no known cause for abnormalities; (b) abnormal creatinine, urea, and creatinine clearance; (c) abnormal proteinuria; or (d) abnormal urinalysis—haematuria or pyuria.

The findings of the study are summarised in Tables 1–3.

We concluded from this study that: (a) workers regularly exposed to asphalt or bitumen fumes were far more likely to have evidence of early stage renal disease than those working in a quarry or office; (b) workers regularly exposed to asphalt or bitumen fumes were far more likely to have at least one abnormal renal function test than those working in a quarry or office; and (c) the renal dysfunction was non-specific, but the overall findings were consistent with previous findings—such as those from the similar study done by Yaqoob et al.

We think that chronic glomerulonephritis and chronic tubulointerstitial nephritis are renal diseases which may result from exposure to hydrocarbons—such as those experienced from asphalt or bitumen fumes generated during road making.

DAVID DOUGLAS
Sydney, NSW, Australia

GAVIN CARNEY
The Canberra Hospital, Canberra ACT, Australia

Correspondence to: Dr David Douglas, Locked Bag 14, Edgecliff NSW 2027, Australia.

Authors’ reply.—The report of Douglas and Carney of a further case of renal disease associated with hydrocarbon exposure, together with their cross sectional study of those with prolonged exposure to bitumen and asphalt further strengthens the case for an association between renal disease and hydrocarbon exposure. Yaqoob et al have also convincingly shown, that in particular, proteinuria may be associated with hydrocarbon exposure.1

This highlights the need for a careful occupational and social history to be taken at the time of presentation. This case also highlights the need for performing a renal biopsy in adults presenting with unexplained proteinuria. If interstitial nephritis is found then a short course of steroids may result in a dramatic improvement in renal function as we noted in the case of our patient exposed to asphalt. Many thanks to Dr David Douglas for an interesting report.
Cancer risk in the rubber industry: a review of recent epidemiological evidence

INTRODUCTION—Although the comprehensive review of the rubber industry reported by Kogevinas et al only considers papers published after 1982, several of these studies relate to groups of workers from much earlier eras—for example, 1910 for the German study, 1946 for the British Rubber Manufacturers Association (BRMA) study 1 and Veys studies. 2 By considering the findings of these earlier rubber workers along with studies of more recent groups of workers we are getting a picture of 80 years of cancer experience in the industry, which is not the same as the situation that exists today.

It should also be borne in mind that the very large cohort studies—such as the 34 000 workers in the BRMA study 1 —have very much greater statistical power than those of the smaller studies, in which confounding factors and the role of chance are more difficult to evaluate. This does not seem to have been fully taken into account and indeed Kogevinas et al tell us that they have “paid much attention to statistical significance”. This is disappointing as it is the omission of a full meta-analysis of the studies, which if it had been carried out, would have added considerable weight to their conclusions.

In general, the review would seem to endorse and reflect the evaluation by the International Agency for Research on Cancer (IARC) 3 of the industry in the 1987 IARC monograph, supplement 7 of a moderate increase in risk of cancer at several different organ sites which are not consistently found in similar studies carried out in other parts of the world. Evidence suggests that this merely reflects alternative methods of handling and processing rubber and different sources of supply of raw materials around the world. This review, however, seems to have added considerable weight to their conclusions.

Kogevinas et al have given an interesting and important overview of health hazards observed in rubber workers employed during the past 80 years. We agree with them that there was a more relevant, modern, and comprehensive epidemiology if we are to obtain a true picture of the situation today.

J K STRAUGHAN
British Rubber Manufacturers Association, Scala House, Holloway Circus, Birmingham B1 1EQ, UK

Inhalation of ammonium nitrate fuel oil explosive (ANFO): and possible concomitant exposure

EDITOR,—Donoghue reports on respiratory symptoms and rhinitis in a miner after exposure to ammonium nitrate fuel oil explosive (ANFO). As diesel fuel is the most commonly used fuel in ANFO the vapour he refers to might be components of diesel fuel. He excludes concomitant exposure to nitrogen dioxide because the inhalation occurred before any explosion took place. Although diesel powered machines are commonly used in underground work he does not discuss possible exposure to diesel exhaust. We have measured up to 15 ppm nitrogen dioxide during construction of a tunnel where the only known source was diesel exhaust. Exposure to such high concentration may contribute to respiratory symptoms and rhinitis. Therefore nitrogen dioxide should not be excluded as a concomitant causative factor.

In a study of the contribution of gases from diesel exhaust and from the blasting cloud caused by ANFO explosive during excavation of a tunnel, diesel exhaust contributed most to the total amounts of nitrogen dioxide in the tunnel.

PER SOSTRAND
Centre for Occupational and Environmental Health, The National Hospital, 0207 Oslo, Norway

3 Flindt MLH. Allergy to a-amylase and papain. Lancet 1979;i:1407–9.
7 Flindt MLH. Respiratory hazards from papain. Lancet 1978;i:430–43.

Occupational asthma due to amylase

EDITOR,—In a letter to you, Hendrick points out my inadvertently overlooked report in The Lancet on allergy to u-amylase and papain, and makes generous reference to my other work on enzymes.

For clarification, I should point out that the evidence, supported by the findings with amylase, that sensitisation and consequential symptoms may occur from proteases independently of proteolytic activity, must not obscure the fact that proteolytic mechanisms may cause other clinical and subclinical effects. As well as skin irritation, non-sensitised people may experience epistaxis or haemoptysis, whereas rhinorrhoea or asthma are more likely to be due to allergy. Proteolytic damage to cause proteolytic effects varies between different proteases, and susceptibility to such effects varies between people. I think I have experienced such effects myself, and possible long term consequences have been described.

Although he concurs with the use of skin prick tests as an index of sensitisation, Hendrick expresses reservations about my evidence of causality in respect of chest symptoms from u-amylase. This is understandable if I relied solely on his condensation of an already condensed report. Although my report derived from a comprehensive ongoing investigation, I had hoped I had summarised sufficient information to make my point.

His reservations seem to derive from the fact that papain was also handled in the workplace, and that some of those sensitised to u-amylase were also sensitised to papain. At this factory papain and u-amylase were handled in pure form, seldom, and at different times. There is no association between handling one or other material and the development of symptoms was clear cut, and because of the short period of handling, with intervals of at least a month between these periods, there was time for symptoms to regress between exposures.

I had already validated a skin prick test for papain sensitivity,5 and was able to use the same test to test a similar one for u-amylase. Positive prick test findings seemed to confirm the specificity and likely mechanism of the typical asthmatic symp- toms from each enzyme.

Had I had more doubt as to causality I would not have published the warning. Happily, subsequent reports, in- cluding the excellent one by Aitkin et al., which Hendrick is a co-author of, which included inhalation challenge tests with fungus u-amylase, have endorsed my conclusions and added further knowledge.

MICHAEL L H FLINDT
Lofotvidding, Nedreland, Cumbria, LA19 5LU, UK

2 Flindt MLH. Allergy to a-amylase and papain. Lancet 1979;i:1407–9.
6 Flindt MLH. Respiratory hazards from papain. Lancet 1978;i:430–43.

Health of children born to medical radiographers

EDITOR,—There are increasing concerns that parental workplace exposure to potentially hazardous agents could affect the health of future offspring. In response to this, Roman et al. have developed a questionnaire based method for collecting data on reproductive outcome and child health which has been applied to a study population comprising (predominantly female) members of the Col- lege of Radiographers. I have recently had cause to revisit their report of this work in more detail and have several comments.

The study relies on postal questionnaires for details of adverse outcomes, major congenital abnormalities, and malignancies, but only reports of cancer were validated by reference to national registration schemes and medical records. Comparisons with national cancer registration rates for England and Wales and congenital malformation rates derived from data compiled by the Liverpool Congenital Malformation Registry showed lit- tle evidence to suggest an increased risk for cancer or for major congenital malformations. Within specific systems no excess relative risk was observed. Additionally, there were no significantly increased relative risks were found—for “other musculoskeletal” malformations and for “chromosomal anomalies other than Down’s syndrome”—both domi- nated by adverse outcomes reported by former female radiographers. My particular interest is with the group of six cases of chromosome anoma- lies other than Down’s syndrome.

Four cases of Turner’s syndrome were reported by female radiographers diagnosed before birth and the pregnancies terminated. The Turner phenomenon, recog- nised in live born infants, is characterised by monosomy X and has a birth incidence in females of 1/2000–1/5000. However, the frequency of monosomy X at conception is much higher, occurring in 1–2% of all clini- cally recognised pregnancies.6 Over 99% abort spontaneously,70% of these between 11 and 14 weeks gestation.8 The infant suffering Turner’s syndrome will vary considerably with different stages of pregnancy and this has implications for the calculation of expected numbers of cases. When evaluating Turner’s syndrome in relation to aetiological influence it is impor- tant to have accurate information on the timing and method of diagnosis, and compari- sons must be made with appropriate registry data. In around 80% of cases the X chromo- some present is maternal9 but two-thirds9,10 therefore, by contrast with most cases of Down’s syndrome, an error in meiotic non-disjunction cannot be attributed to the mother. Of those diagnosed after birth, some are mosaics with a normal XX cell line and a smaller cell line with one normal and one abnormal X chromosome, and it has been suggested that mosaicism increases the likelihood of survival during pregnancy.10 Such mosaics are assumed to have arisen post-zygotically. Turner’s syn- drome is, therefore, most likely to occur due to an error in non-disjunction arising either during spermatogenesis or after fertilisation, and the origin of the error can often be determined by undertaking cytogenetic studies. Consequently, it is unlikely that maternal preconceptional exposure is relevant to the occurrence of the cases of Turner’s syn- drome reported to Roman et al. although it is possible that events immediately after concep- tion could be implicated in the origin of any with a mosaic karotype. It is unfortunate that Roman et al provide no karotypic data nor information on whether the mothers were working as radiographers when they conceived as this would have assisted in the interpretation of this association.

Two further pregnancies with chromosomal abnormalities were described—a 45,X chromo- somal anomaly reported by a female radiographer and a trisomy 17 reported by a male radiographer—both of which were termi- nated. Referral to results of chromosomal studies would have enhanced these reports. Although the possibility of the gross chromosomal anomaly being the result of a familial rearrangement could then have been explored. Trisomy 17 is rather a surprise as this is considered incom- patible with embryo development and has not, to my knowledge, been detected by antenatal diagnosis. There must be a possibility that this information is incorrect.

Aetiological mechanisms must be consid- ered when assessing the biological plausibility...
of epidemiological associations, and reliance on personal memory will not provide the detailed data which allow chromosomal abnormalities to be grouped in a meaningful way when exploring possible environmental influences. The study of Roman et al illustrates the need to confirm diagnoses reported in questionnaires whenever possible, and to obtain any additional information that may assist in the scientific evaluation of epidemiological results.

E JANET TAWN
Genetics Unit, Westmead Scientific Consulting, Geoffrey Schofield Laboratories, Westmead Scientific and Technology Park, Moor Rd, Cumbria, CA24 3JZ, UK

BOOK REVIEWS

Correlation

The section entitled "Statistical methods: cross sectional study" (page 687), should read:

In the cross sectional study, crude prevalence and age adjusted (Mantel-Haenszel) relative prevalences (95% confidence intervals (95% CIs)) were calculated by occupational group for the following outcomes: age adjusted hearing loss at 1–6 kHz greater than 30 dB, 4 kHz >105 dB, and diastolic blood pressures >95 mm Hg (not diastolic blood pressure >95 mm Hg).

The authors deeply regret these errors, which do not alter the conclusions of the paper. We kindly ask the reader to comply with these corrections when interpreting the data presented in tables 2 and 3.

MORTON LIPPMANN

Airborne fibre concentrations have been evaluated by the membrane filter method for over 30 years. The original method, which was developed for use in asbestos factories, has been adapted for use with many different types of fibre in both occupational and non-occupational situations. By the 1970s it was clear that there were substantial differences between laboratories when evaluating the same samples. Errors not directly involved could be attributed to variations in the detailed methodology and this started the quest to devise a "standardised" version of the membrane filter method. This book is the latest attempt to standardise the method on this occasion to harmonise methods used for analysis of asbestos—for example, the Euro- pean Reference Method (ERM) used throughout the European Union, with the previously published World Health Organisation method for man made mineral fibres (rockwool and glasswool). The new method is applicable to all fibre types, both organic and inorganic.

The method specification is contained within 17 statements which are supple- mented by more detailed descriptions. It contains details of everything required from the type of filters to be used to the character- istics of the fibres to be counted. The accuracy, precision, and lower limit of measurement are also provided.

This is a specialist book which will be of limited interest to those not directly involved with measurement of exposure to fibres. However, it is clearly the authors' intentions to influence the appropriate national authori- ties to incorporate this version of the membrane filter method into their legislation. If this method does replace the ERM then measured fibre concentrations would probably increase, for some industries by perhaps as much as 50%. The implications for epide- miological studies, risk assessment, and standards setting need to be carefully consid- ered.

JOHN W CHERRIE

This book is aimed at managers and others who wish to obtain an understanding of the principles of occupational safety and health in the United Kingdom. It is published by the Institution of Occupational Safety and Health (IOSH) and it is the recommend text for their safety appreciation course, Managing Safety.

The text is divided into four sections: safety technology, occupational health and hygiene, safety management, techniques, and law. There are 68 short chapters which cover the essential factual information required by someone responsible for managing health and safety. Each chapter includes several self-assessment questions and a bullet point sum-
mastery of the key points which could be used for future reference. The scope of the book is enormous and includes machinery guarding, chemical safety, fires, electrical hazards, manual handling, and accident investigation. There are over 100 pages out of about 270 devoted to summarising the main pieces of health and safety legislation. This edition of the book has been revised to include new legislation, especially referring to construction health and safety.

This book is primarily designed to support taught courses covering the basics of health and safety. Used in this way I am sure that it would be a valuable resource, with the section dealing with the law being particularly helpful. It is a good reference book to be used as a textbook in other situations. There are extensive commendations for further reading, although these are almost exclusively publications from the United Kingdom Health and Safety Executive or British Standards.

The index is particularly poor and seems to have been naively compiled with some companion entries being unhelpful—for example, 45 entries referring to employees—or irrelevant—for example, an entry for yawning in respect of someone who has received an electric shock. This makes it a useful resource for managers and others in the United Kingdom who plan to attend a basic course in health and safety. The sections on legislation give a good overview of the relevant acts and regulations, although they are probably insufficient to act as a reference for those trying to comply with the law.

JOHN W CHERRIE

Although the harmfulness to health of asbestos was originally described at the end of the 19th century, it was only in the 1960s after the publication of the seminal paper on mesothelioma in South Africa, that considerable interest in the health risks associated with exposure to asbestos became apparent. The book summarises the known health effects of asbestos and the, as yet, incomplete but reassuring literature on the epidemiology of workers exposed to other fibres. It then discusses the experimental animal and in vitro evidence with respect to man-made fibres. There is useful discussion of fibre deposition, clearance, and solubility leading to conclusions which in my view are wholly sensible. For asbestos, the authors argue against a general policy of removal and for management in situ unless the material is releasing unacceptable amounts of dust. For man-made fibres, the authors express caution about the production of fine diameter fibres but point out that almost all the material used commercially is not respirable and that there is no reason to suppose that current levels of exposure pose any risk to the public. All in all this is a remarkably informative book containing much information on mineral fibres that is not readily available elsewhere. The debate about the harmfulness of fibres needs to shift back to the protection of exposed workers away from theoretical risks to the general population.

ANTHONY SEATON

Tobacco Or Health: A Global Status Report.

“Every 10 seconds, another person dies as a result of tobacco use”. This is the stark introductory sentence to this reference book compiled by the World Health Organisation as a source of standardised baseline information on tobacco production, trade, consumption, health effects, and control in WHO member states. The book is divided into two parts: the first, comprising 60 pages, attempts to summarise the global situation in the late 1980s and early 1990s. The second and larger part provides a series of “country profiles” for each of the member states, typically of one or two pages. These list the latest available information on demographic and general health indicators, tobacco production, trade and industry, tobacco consumption, and smoking prevalence by age and sex, and national tobacco control policies and programmes.

Designed as a reference text, this is not a book to be read from cover to cover. Its strength is the near comprehensive coverage of national statistics on tobacco production and use, which are usefully summarised in part one. These may suffice for readers with an epidemiological background, among whom the adverse health effects of smoking are taken for granted. For a more general readership, however, a notable weakness of this book is the paucity of information on health consequences of tobacco use. The relevant chapter in the first part runs to only five pages, including four tables, and is supported by only two references, one of which is yet to be published (although the text has recently been cited as a series of recent articles in the Lancet). The discussion of health effects is entirely focused on mortality, mainly from broad groups of causes, such as total mortality, and cancer deaths. Remarkably there is no mention of the disability and loss of productivity related to cardiovascular and respiratory diseases, nor of the consequences of environmental tobacco smoke. Where the health effects are assessed for individual countries in part two, figures are provided mainly for developed countries and relate principally to estimates of tobacco related death and trends in mortality.

This volume provides a powerful reminder, if such is needed, that tobacco use is a global phenomenon, with one third of adults now smoking, and two thirds of these residing in developing countries. The premises underpinning the report is that widespread tobacco consumption and public health are mutually incompatible, but readers seeking a comprehensive collation and consideration of the epidemiological evidence on smoking and ill health will be disappointed. It is apparent that the WHO intends these data to be a baseline for a global programme of surveillance of smoking habits and tobacco control. Evidently much more work is needed to compile a similarly comprehensive account of the effects of tobacco use on health in many countries, particularly in the developing world. A valuable addition to future editions would be evidence from countries with well developed tobacco control policies of the extent to which lowering smoking prevalence reduces death and disability. This might encourage much needed policy initiatives in many other countries where tobacco control has yet to achieve prominence on the public health agenda.

DAVID P STRACHAN

Cancer in the Offspring of Radiation Workers: A Record Linkage Study.

This monograph gives full details of a study conducted to test the Gardner hypothesis, namely, that childhood leukaemia and non-Hodgkin’s lymphoma result from the father’s
exposures to ionising irradiation before conception. This study has also been published as a paper in the *BMJ*, but this volume goes into far greater details than is available elsewhere. This is very much a book for the concerned specialist reader who wants the technical background to the *BMJ* article.

This study is essentially a record linkage exercise. The exposed fathers (and mothers) were defined as having records with the National Registry for Radiation Workers (NRRW) held by the NRPB. This is a database of over 120,000 people and it was linked with the national register of childhood tumours, a database of over 50,000 children with all types of cancers. Two other data sources on childhood cancers were also included.

For the three sources of data on childhood tumours, controls were found in various ways to ascertain if these children had a father in the NRRW. The parental estimated doses were created from the NRRW. In all a total of 200 fathers and mothers were linked to children with cancer. Eighty two children with leukaemia or lymphoma were linked to fathers' records at the NRRW, as were 79 control fathers. The corresponding numbers for mothers were 15 and three.

The cases in the original Gardner paper were excluded and the results for fathers showed that case fathers had a 1.77 significant excess risk over control fathers for having a child with leukaemia or lymphoma. However, the risk was associated with the lowest dosages and there were no dose responses in any of the comparisons. In this sense the Gardner hypothesis is refuted!

Furthermore, the risk in mothers was also significantly and greater in magnitude than the fathers. However, the small numbers make this result unreliable and difficult to use to extrapolate risk.

The explanation of the association found in these NRRW members exposed to low doses is not known. It could be chance, it could also be due to misuse of film badges by those in high risk industries. This explanation is unlikely in that the cancers were distributed widely across industries in the United Kingdom and were not confined, by any means, to the nuclear reprocessing or related industries. It may be due to other exposures associated with the wider radiation industries where many other hazardous substances exist as well as ionising irradiation. Finally, it could be some other, more subtle aspect, of wearing a film badge. The authors speculate that this might be associated with the mobility of the parents, thereby linking these results with the Kinlen hypothesis which is based on ideas of infectivity associated with population mixing. They do not produce evidence to suggest that film badge wearers are more mobile than other professions but the differences in behaviour may be more complex.

Further light might be shed on this association when the nuclear industry family study (NIFS) is analysed shortly. This study will answer some criticisms of the present study. For example, it is known that there are differences in behaviour of people within the nuclear industry and those outside it. The NIFS uses internal comparisons and so such differences can be accounted for.

Despite the lack of any explanation of this observation attention is now bound to be focused on other preconceptional and periconceptual exposures in both sexes and their possible links with childhood malignancies.

R A CARTWRIGHT

Exposure to asphalt or bitumen fume and renal disease.

D Douglas and G Carney

Occup Environ Med 1998 55: 645-646
doi: 10.1136/oem.55.9.645