Cancer risk in the rubber industry: a review of the recent epidemiological evidence

Manolis Kogevinas, Maria Sala, Paolo Buffetta, Neely Kazerouni, Hans Kromhout, Shelia Hoar-Zahm

Abstract

Objectives—To examine the recent epidemiological evidence on cancer risk among workers in the rubber industry.

Methods—Epidemiological studies published after the last detailed review by the International Agency for Research on Cancer (IARC) in 1982 were reviewed. 12 cohort studies in nine countries that examined distinct populations of workers in the rubber industry, seven industry based nested case-control studies, 48 community based case-control studies in 16 countries, and 23 studies based on administrative data that reported risks for employment in the rubber industry were identified.

Results—Excess risks of bladder cancer, lung cancer, and leukaemia were found in most studies, with risks above 1.5 in about half of the studies. A moderate excess risk for laryngeal cancer was consistent across studies. Excess risks were found in a few studies for cancers of the oesophagus, stomach, colon, liver, pancreas, skin, prostate, kidney, brain, and thyroid, and for malignant lymphoma and multiple myeloma, but overall results were not consistent for these neoplasms.

Conclusions—Magnitude of the observed risks varied considerably between studies, but overall the findings indicate the presence of a widespread moderate increased cancer risk among rubber workers. The most consistent results were for bladder, laryngeal, and lung cancer and for leukaemia. Excess risks were also found for other neoplasms but an evaluation of the consistency of the findings is difficult because of the possible selective reporting of results. Recent studies do not provide information associating specific exposures with cancer risk. The preventive measures taken in the rubber industry in recent years may decrease risks, but this has not been documented yet in epidemiological studies.

Keywords: neoplasms; rubber; occupation

The evidence of a carcinogenic risk in the rubber industry has been reviewed by the International Agency for Research on Cancer (IARC) in 1982 and in summary form in 1987. The IARC Working Group concluded that there was sufficient evidence that employment in this industry entails a carcinogenic risk. This association was considered causal for bladder cancer and leukaemia, whereas confounding could not be ruled out for the excess risks found for stomach and lung cancer. The strength of the evidence was considered to be limited for cancer of the skin, prostate, and colon, and for lymphoma and inadequate for cancer of the brain, thyroid, and pancreas.

Examination of processes or exposures within this industry was pre-empted at the time of the IARC evaluation, because of the limited information available. The early studies of rubber workers in the United Kingdom showed a large increase in the risk of bladder cancer among workers employed during the 1930s and 1940s, which was attributed to exposure to β-naphthylamine. Subsequent studies have shown that removal of this agent led to a decreased cancer risk. It was postulated that heavy exposure to dusts such as carbon black in the first steps of production lines may be associated with the risk of stomach cancer, and that the risk of lung cancer was associated with exposure to curing fumes. In the United States, a large study of rubber workers employed in two companies in Ohio, showed little or no excess of bladder cancer, whereas there was a suggestion of an increased risk of stomach cancer, possibly related to exposure to toluene, of prostate cancer, and lymphatic leukaemia, possibly associated with exposure to solvents, particularly benzene.

Recent exposures in the rubber industry

Since the early 1950s and more extensively since the 1970s, health and safety measures have been widely applied in the rubber industry by substituting some chemical agents and controlling exposure to others. A recent extensive exposure survey in the rubber industry in the Netherlands, did not find the large differences in the past in exposure to airborne particulates between front processing (weighing and mixing, calandaring, extruding) and back processing (curing and vulcanising).
Table 1 Summary data on cohort studies and studies based on administrative data in the rubber industry published after 1982

<table>
<thead>
<tr>
<th>Author</th>
<th>Description of study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohort studies:</td>
<td></td>
</tr>
</tbody>
</table>
| Holmberg et al 1983 | Sweden, two factories. 13114 workers. Mortality 1961-78. Three exposure groups: (a) mixers/weighters, (b) other production, (c) white collar. Same factories as Gustavsson et al 1986. Both sexes.
Norseth et al 1983 | Norway, 2448 men employed for 18 months or more in a footwear and tyre plant between 1953-78. Cancer incidence.
Delzell and Monson 1984 | USA, Akron, Ohio. 6533 men employed in the industrial products division of a rubber plant (BF Goodrich). Mortality 1940-78. Same cohort as Delzell and Monson.
Delzell and Monson 1984 | USA, Akron, Ohio. 3161 men employed in the aerospace division of a rubber plant (BF Goodrich). Mortality 1940-78.
Delzell and Monson 1985 | USA, Akron, Ohio. 1152 white men in the tyre-curing department of a rubber plant (BF Goodrich). Mortality 1940-78. Same cohort as Delzell and Monson.
Sorahan et al 1989 | Denmark, record linkage study, 1970-9, 76985 cases. Rubber industry. SPIR.
Vasala et al 1993 | Spain, 13114 workers in a footwear plant. Mortality 1961-78. Three exposure groups: (a) mixers/weighters, (b) other production, (c) white collar. Same factories as Gustavsson et al 1986. Both sexes.
Vasala et al 1993 | USA, Akron, Ohio. 1152 white men in the tyre-curing department of a rubber plant (BF Goodrich). Mortality 1940-78. Same cohort as Delzell and Monson.
Sorahan et al 1989 | UK, BRMA cohort, 36445 male rubber workers. Mortality 1946-80. Minimum employment is one year. Workers classified into tyre and general rubber goods sector; by exposure to dusts; by exposure to fumes or solvents.
Vees et al 1991 | UK, 16450 workers. Cancer incidence 1946-85. One of the tyre plants included in the BRMA cohort, see also corrigendum.
Carlo et al 1993 | Texas, USA, 2306 male workers in a tyre manufacturing plant employed for at least one year between 1962 and 1989. Exposure levels reported to have been minimal compared with older cohorts.
Solonova and Smulevich 1993 | Russia, Moscow, 1178 men and 2492 women employed at a rubber footwear and rubber goods plant for at least 10 years before 1983. Cancer incidence and mortality. Workers classified into production/non-production.

Studies based on administrative data:

<table>
<thead>
<tr>
<th>Author</th>
<th>Description of study</th>
</tr>
</thead>
</table>
Malkir et al 1987 | Sweden, record linkage study, 1961-79. Rubber industry. SIR.
Olsen and Jensen 1987 | Denmark, record linkage study, 1970-9, 76985 cases. Rubber industry. SPIR.
Zhang et al 1992 | China, Shanghai, 1980-84. Rubber and plastic workers. SIR.

SIR = standardised incidence ratio; SPIR = standardised proportional incidence ratio; SMR = standardised mortality ratio.

Replacement of powdered chemicals by chemicals in non-powdered form led to reduced exposures to inhalable particulates in the compounding mixing area. However, 22% of almost 60 different accelerating, retarding, and antidegrading agents were still being used in powdered form by the end of the 1980s, including several agents classified in either the British Rubber Manufacturers Association B (acute or chronic toxic effects), or Sc (carcinogenic effects) categories. Exposure to solvents was generally low and restricted to workers involved in pretreating. The median fumes concentration in curing departments was as high as 400 mg/m³. Dermal exposure to compounds soluble in cyclohexane was high for workers in engineering services and in compound mixing departments. When the same companies were revisited five years later in 1994, the chemicals in the Sc category had been either replaced, cut down in use, or used in non-powdered form.

This review

In this review we summarise the evidence on cancer risks from cohort and case-control studies and from studies with administrative data published after the 1982 IARC evaluation, and examine whether these studies provide a comprehensive assessment of the risk of cancer among rubber workers. We reviewed studies on the sectors of the rubber industry evaluated by IARC in 1982: tyre manufacturing and repair, cable making, and manufacture of other rubber goods. Studies of workers in the production of natural rubber and synthetic polymers are excluded.

Materials and methods

Studies were identified through literature searches in commercial data banks (MEDLINE, CANCERLINE, TOXLINE), IARC archives, and in the United States National Cancer Institute computerised reference file. We did not include unpublished data and studies reported only as abstracts. We identified 12 cohort studies from nine countries examining distinct populations of workers in the rubber industry; seven nested case-control studies in this industry; 48 distinct community based case-control studies from 16 countries that used questionnaire data and reported risks for employment in the rubber industry; and finally, 23 studies based on administrative data—such as death certificates, cancer registration, or linkage between census and cancer registry—that presented results by industry or occupation pertinent to assess the risk of cancer among rubber workers. Some of the studies reviewed are updates or more specific investigations of previously reported cohorts. All studies are briefly described (table 1 (cohort) and table 2 (case-control)). In some studies, the populations examined partially...
Results

ALL CAUSES OF DEATHS AND ALL MALIGNANT NEOPLASMS

Mortality from all causes was higher than expected based on national reference rates in three cohorts.15, 24, 55 Mortality was lower than expected in four studies27, 28, 30, 31 and in the four departments of the Akron, Ohio cohort.18–21 Cancer incidence or mortality was higher than expected in six cohorts11, 24–26, 30, 33 and in the aerospace, curing, and reclaim departments of the Akron, Ohio cohort.16–21 The excesses in SMRs or SIRs were mostly between 5% and 20%. Cancer incidence or mortality was lower than expected in four cohorts17, 22, 25, 30 and in the industrial process division of the Akron, Ohio cohort.18

BLADDER CANCER

Figure 1 shows the results on incidence and mortality of bladder cancer.

Cohort studies

Excess risk of bladder cancer was found in seven distinct studies41–43, 27, 28, 30, 32 and in the four departments of the Akron, Ohio cohort.18–21 either for the total study population or for workers employed in specific departments. A >50% excess risk, ranging from 1.6 to 5.2, was found in six of these studies and in the reclaim department of the Akron, Ohio cohort.18–21 No excess risk was found in two studies.24, 31 In four studies reporting results by calendar period, risk was highest among workers employed before the 1950s16, 18, 28, 30 who, in one study, were potentially exposed to β-naphthylamine.30 Risk of workers first employed after the 1960s was examined in three studies.27, 31, 35 A twofold excess risk was found in the largest study (SMR 2.14, 95% confidence interval (95% CI) 1.07 to 3.84, 11 deaths).35 The other two studies had little statistical power to examine bladder cancer risk. Only some studies reported risk in subgroups of workers13–17, 27–29 and there is no clear indication of a particular risk in any specific department of the rubber industry, or in workers of specific rubber products. An excess risk was found in five distinct studies based on administrative data91–95 but no excess was seen in three.97–99

Case-control studies

Excess risks with odds ratios (ORs) ranging from 1.5 to 5.7, after adjustment for potential confounding factors such as smoking, were found in 11 case-control studies.41–45, 48, 49, 56, 58, 103 Lower excess risks were found in two community based studies64, 55 and in a nested case-control study54 and no excess

![Figure 1](http://oem.bmj.com/)

Figure 1 Bladder cancer risk in workers employed in the rubber industry. Odds ratios (95% CIs) for studies including >5 exposed cases.
Table 2 Summary data on case-control studies and studies based on administrative data in the rubber industry published after 1982

<table>
<thead>
<tr>
<th>Author</th>
<th>Description of study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bladder cancer:</td>
<td></td>
</tr>
<tr>
<td>Schoenberg et al 1984**</td>
<td>USA, New Jersey; 658 bladder cancer cases; 1258 population controls. Lifetime occupational history. Parity overlapping with Zahm et al 1987.**</td>
</tr>
<tr>
<td>Coggon et al 1984**</td>
<td>England and Wales; 291 cases who died of bladder cancer. Two controls per case from all causes of death selected from death certificates.</td>
</tr>
<tr>
<td>Vines and Magnani 1985**</td>
<td>Italy, Torino, 512 male bladder cancer cases; 596 male hospital controls. Lifetime occupational history.</td>
</tr>
<tr>
<td>Morrison et al 1985**</td>
<td>US, Boston; UK, Manchester; Japan, Nagoya. 430, 399, and 226 bladder cancer cases respectively; 397, 493, and 443 population controls respectively. Occupational history by questionnaire.</td>
</tr>
<tr>
<td>Baxter and McDowell 1986**</td>
<td>England; Six London areas, 1080 male cases; two controls per case (a) selected from deaths from all other cancers; (b) deaths from all causes. Mortality 1968-78. Occupations from death certificate.</td>
</tr>
<tr>
<td>Zham et al 1987**</td>
<td>USA, 2982 cases; 5782 population controls. Lifetime occupational history. Parity overlapping with Schoenberg et al 1984.**</td>
</tr>
<tr>
<td>Jensen et al 1987**</td>
<td>Denmark, Copenhagen, 371 bladder cancer cases; 771 population referents. Lifetime occupational history.</td>
</tr>
<tr>
<td>Kjuus et al 1987**</td>
<td>Belgium, 74 bladder cancer cases; 205 population controls. Lifetime occupational history.</td>
</tr>
<tr>
<td>Iscovich et al 1987**</td>
<td>Argentina, La Plata, 117 cases; 117 hospital and 117 neighbourhood controls. Three occupations of longest duration and most recent occupation.</td>
</tr>
<tr>
<td>Schrager et al 1988**</td>
<td>See entry under multipletumoursites.</td>
</tr>
<tr>
<td>Chu et al 1988**</td>
<td>Canada, 826 bladder cancer cases and hospital controls. History of occupational exposures and jobs.</td>
</tr>
<tr>
<td>Endres et al 1988**</td>
<td>Germany, 531 male bladder cancer cases; 531 hospital controls. Lifetime occupational history. Same study as Kunze et al 1992.**</td>
</tr>
<tr>
<td>Gallager et al 1989**</td>
<td>USA, 757 bladder cancer cases and 1514 hospital controls. Lifetime occupational history. Same study as Sauvain et al 1989.**</td>
</tr>
<tr>
<td>Gonzalez et al 1989**</td>
<td>Spain, five areas, 497 bladder cancer cases; 530 hospital controls, 530 population controls. Lifetime occupational history.</td>
</tr>
<tr>
<td>Lu Vecchia et al 1989**</td>
<td>Italy, Milan, 263 bladder cancer cases; 287 hospital controls. Checklist of occupations and exposures.</td>
</tr>
<tr>
<td>Hall and Rosman 1991**</td>
<td>See entry under multiple tumour sites.</td>
</tr>
<tr>
<td>Notani et al 1993**</td>
<td>See entry under multiple tumour sites.</td>
</tr>
<tr>
<td>Corfield et al 1993**</td>
<td>France, 765 cases; 765 hospital controls. Lifetime occupational history.</td>
</tr>
<tr>
<td>Hours et al 1994**</td>
<td>France, Lyon, 116 cases. Two hospital control groups of 116 subjects each. Lifetime occupational history.</td>
</tr>
<tr>
<td>Barbone et al 1994**</td>
<td>Italy, north-east, 273 male and female cases; 573 hospital controls. Usual occupation.</td>
</tr>
</tbody>
</table>

Lymphoma: |
Wilkosky et al 1984**	See entry under multiple tumour sites.
La Vecchia et al 1989**	Italy, Milan, both sexes. Hodgkin's disease, 69 cases; non-Hodgkin's lymphomas, 153 cases; 396 hospital controls frequently matched. Checklist of occupations and exposures.
Fransceschi et al 1991*	See entry under multiple tumour sites.
Blair et al 1993**	USA, Iowa and Minnesota, 622 white non-Hodgkin's lymphoma male cases; 1245 population based white male controls. Lifetime occupational history.

Multiple myeloma: |
La Vecchia et al 1989**	Italy, Milan, 110 cases; 396 matched frequency hospital controls. Checklist of occupations and exposures.
Heineman et al 1992**	Denmark, 1098 men diagnosed between 1970-84; 4109 controls chosen randomly from the Danish central population registry. Lifetime occupational history from pension fund records.
Pottern et al 1992**	Denmark, 363 women diagnosed between 1970-84; 1517 controls selected from the central population registry. Lifetime occupational history from pension fund records.
Demers et al 1993*	USA counties in Washington State; metropolitan Atlanta; metropolitan Detroit, 693 cases diagnosed between 1977-81; 1683 population based controls. Lifetime job history.
Figg et al 1994**	USA, 24 states. 12148 male and female deceased subjects cases; 60740 controls dying from diseases other than cancer, selected from the death certificate data base. Mortality 1984-9. Occupation and industry from death certificate.

Leukaemia: |
Arp, Jr et al 1983**	USA, nested case-control study within a cohort of rubber industry workers (McMichael et al 1975).** 15 male and female cases of lymphocytic leukaemia; 30 matched industry controls. Mortality 1964-73. Historical solvent exposure profile for rubber industry job titles.
Wilkosky et al 1984*	See entry under multiple tumour sites.
Dubrow and Wegman 1984**	See entry under multiple tumour sites.
Fledin et al 1987*	Sweden, middle and south east, 111 white men and women diagnosed with chronic lymphatic leukaemia; 431 randomised population referents. Checklist of occupational exposures.
Malone et al 1989**	USA; western Washington State; northern Utah; Detroit, Michigan; Atlanta, Georgia. 427 men and women diagnosed with chronic lymphocytic leukaemia 1977-81; 1683 population based controls. History of chemical exposure and employment of six months or more in four specific industries.
Gallager et al 1989**	See entry under multiple tumour sites.
Loomis and Savitz 1991**	USA; 16 states, 5147 male deceased subjects with leukaemia; 51470 controls (other causes of death). Subjects from 1985-7 mortality data tapes from the National Centre for Health Statistics (NCHS). Occupation from death certificate.

Lung cancer: |
Delzell et al 1982**	USA, Akron, Ohio (University of N Carolina cohort, McMichael et al 1975).** nested case-control study. 121 white male cases; 448 controls who died of other causes. Mortality 1964-73. Detailed employment history in 19 work areas.
Milne et al 1983**	USA; California, Alameda County, 925 lung cancer deaths; 6420 deaths with other cancers identified through death certificates. White and non-white males and females. Mortality 1958-62. Usual occupation and industry from death certificate.
Dubrow and Wegman 1984**	See entry under multiple tumour sites.
Wilkosky et al 1984*	See entry under multiple tumour sites.
Coggon et al 1984*	UK, England and Wales, 598 cases who died of lung cancer. Two controls per case from all other deaths selected from death certificate. Usual occupation from death certificate.
Kuyk et al 1986*	Norway, southeast, 176 male cases and 176 hospital controls. Main lifetime occupations or exposures.
Schoenberg et al 1987**	USA, six areas of New Jersey, 763 white male incident cases; 900 general population controls. Lifetime occupational history.
Andelkovich et al 1988	USA, University of North Carolina, nested case control study. 40 lung cancer cases occurring 1977-8; 148 controls. 20 occupational title groups.
Levin et al 1988**	China, Shanghai, 733 male cases; 760 population controls. Lifetime occupational history.
Table 2 continued

<table>
<thead>
<tr>
<th>Author</th>
<th>Description of study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallagher et al 1989</td>
<td>See entry under multiple tumour sites.</td>
</tr>
<tr>
<td>Burns and Swanson 1991</td>
<td>USA, Michigan, Detroit metropolitan area, 5935 male and female cases; 3956 incident colon and rectum cancer referred. Complete occupational history.</td>
</tr>
<tr>
<td>Joekel et al 1992</td>
<td>Germany, Bremen, Hamburg, Hannover, Cologne, and Bielefeld, 194 incident male and female cases; 194 hospital and 194 population controls. Lifetime history of occupation and occupational exposures.</td>
</tr>
<tr>
<td>Brownson et al 1993</td>
<td>USA, Missouri. 429 white female incident cases aged 30 to 84 years; 1021 population based female controls. Checklist of selected occupations, industries and occupational exposures.</td>
</tr>
<tr>
<td>Notani et al 1993</td>
<td>See entry under multiple tumour sites.</td>
</tr>
<tr>
<td>Wu-Williams et al 1993</td>
<td>China, Shenyang and Harbin, 965 female cases; 959 population controls. Lifetime occupational history.</td>
</tr>
<tr>
<td>Swanson and Burns 1995</td>
<td>See entry under multiple tumour sites.</td>
</tr>
<tr>
<td>Wang et al 1995</td>
<td>China, Tianjin, cancer registry based case-control study; 8401 male and female lung cancer cases; 27695 cancer control.</td>
</tr>
</tbody>
</table>

Stomach:
- Gallagher et al 1980
- Coogan et al 1990
- Gonzalez et al 1991
- Cocco et al 1994
- Ward et al 1994

Colon:
- Peters et al 1989
- Preston-Martin et al 1987
- Jockel et al 1984
- McLaughlin et al 1986
- Muscat et al 1991
- Prestanen et al 1991
- Wu-Williams et al 1995
- Peters et al 1989
- Le Marchand et al 1985
- Wu-Williams et al 1995
- Brownson et al 1995

Liver:
- Swanson and Burns 1995
- Jockel et al 1984
- Le Marchand et al 1991
- Kidney and renal pelvis:
- Cocco et al 1994
- Zagraniaki et al 1986
- Muscat et al 1991
- Partanen et al 1991

Skin:
- Bourguet et al 1989
- Wang and Burns 1995
- Wang et al 1995
- Muscat et al 1991
- Partanen et al 1991

Larynx:
- Zagranaki et al 1986
- Cocco et al 1994
- Muscat et al 1991
- Partanen et al 1991

Prostate:
- Wilkosky et al 1984
- Elphany et al 1990
- Le Marchand et al 1991
- Kidney and renal pelvis:
- Cocco et al 1994
- Muscat et al 1991
- Partanen et al 1991

Central nervous system:
- Symons et al 1982
- Burch et al 1987
- Preston-Martin et al 1989

Multiple tumour sites:
- Wilkosky et al 1984
- Hall and Rosenman 1991
- Notani et al 1993
- Swanson and Burns 1995
- Dubrow and Wegman 1984
- Gallagher et al 1980

Exposure groups in most case-control studies were defined on the basis of lifetime occupational history and referred to employment in the rubber industry. In some studies, the exposed group included workers employed in the rubber and plastics industry, or in even wider industrial areas. 52 45 57 In the study by Cordier et al, 55 no excess risk was found among workers employed during the period of use of β-naphthylamine. Two studies based on administrative data, in England and the United States, found an excess risk; 48 91 101 one study found no excess risk. 102

NEOPLASMS OF THE LYMPHATIC AND HAEMATOPOIETIC TISSUE

Figure 2 shows the results on neoplasms of the lymphatic and haematopoietic tissue.

Malignant lymphomas

Cohort studies—Excess risks ranging from 1.7 to 3.6 were found in two cohort studies in Italy (Hodgkin’s disease only) 57 and Norway 77 and in the industrial products and aerospace departments of the Akron, Ohio cohort. 19 Excess risks were found in various jobs or departments. No excess risk was found in two cohort
Leukaemia

Cohort studies—Moderately increased leukaemia risks ranging from 1.5 to 2.3 were found in three cohort studies,17 27 35 and in the tyre curing department of the Akron, Ohio cohort.20 Lower excess risks were seen in the industrial products and aerospace departments of the Akron, Ohio cohort.18 19 No excess risk was found in four cohort studies16 24 28 31 and in the reclaim department of the Akron, Ohio cohort.21 The risk of leukaemia was not centred in specific departments, and in most studies was not examined in relation to exposure to specific agents. In the Norwegian cohort,17 six out of nine leukaemia cases had documented exposure to glues with a concentration of up to 4% benzene. An excess risk, ranging from 1.2 to 2.9, was found in three studies based on administrative data,31 93 95 but no excess was found in two.97 98

Case-control studies—High excess risks associated with exposure to benzene35 or other solvents35 36 were found in two nested case-control studies within rubber industry cohorts. Excess risks lower than 1.5 were found in two case-control studies.66 67 An excess risk was found in three studies based on administrative data.102 103 104

Unspecified lymphatic and haematopoietic neoplasms

Results were presented jointly for lymphoma and leukaemia in three cohort studies.31 32 33 A twofold excess risk was found in the study from Russia.32 Results were presented jointly for lymphomas and multiple myeloma in two cohort studies, in which no excess risk was found.31 33

LUNG CANCER

Figure 3 shows the results on lung cancer.

Cohort studies

Excess risks (ranging from 1.7 to 3.3) were found in four cohort studies15 16 29 32 and in the curing department of the Akron, Ohio cohort.20 These risks were found in a variety of departments including workers in tyre curing departments, mixing and milling, vulcanisation workers, and in one study in jobs with high exposure fumes or solvents. Excess risks <1.5 were found in two studies24 33 and in the curing department of the Akron, Ohio cohort.19 No excesses were found in the remaining four cohort studies17 27 28 31 and in the industrial products and reclaim departments of the Akron, Ohio cohort.16 21 In two cohorts, risk was highest among workers employed before the 1950s.16 20 In studies including workers first employed after 1960, no excess was found in two studies,27 31 whereas a small excess (SMR 1.36, 95% CI 1.04 to 1.75, 60 deaths) was found in the German study.35
Cancer risk in the rubber industry

The smoking habits of a subgroup of workers were examined in one study and the findings suggested that the excess risk of lung cancer could not be attributed to smoking. Risks ranging from 1.2 to 1.75 were found in three administrative data studies, whereas no excesses were found in two record linkage studies.

Case-control studies
Excess risks ranging from 1.5 to 4.6 were found in three community based studies and in two nested case-control studies. Lower excess risks were found in two studies and no excess risks were found in four community based studies. No association was found with exposure to solvents in a nested case-control study.

In seven studies, the exposed group included workers in the rubber and plastics industry. An excess risk was found in four studies based on administrative data.

STOMACH CANCER
Figure 4 shows the results on stomach cancer.

Cohort studies
Low excess risks not exceeding 1.6 were found in seven studies. The risk was concentrated in the mixing and milling departments in two studies and in jobs with high exposure to dust in the British Rubber Manufacturers Association, United Kingdom cohort. No excesses were found in four studies and in the industrial products, curing, and reclaim departments of the Akron, Ohio cohort. In none of the four studies based on administrative data that reported results for stomach cancer was the risk >5%.

Case-control studies
Risk of stomach cancer was associated with long term manual employment in the rubber industry in an English study (OR 3.5), and with exposure to rubber or talc in a Spanish study (OR 1.65). A lower excess risk was found in one study which examined exposure of workers in the rubber or chemical industries. In one study based on administrative data the risk was not >5%, and in another study the risk depended on the position of the tumour.

CANCER OF THE OESOPHAGUS
Cohort studies
An increased risk (SMR 2.7) of neoplasms of the oesophagus was found among reclaim workers in the Akron, Ohio cohort. Lower risks, not >1.5, were found in three other cohort studies, the excess being significant in one study (SMR 1.2, 95% CI 1.0 to 1.5). No excess risks were found in three other cohort studies and in the industrial process division of the Akron, Ohio cohort.

Case-control studies
A threefold excess risk for rubber and plastic workers was found in one out of two available studies.

CANCER OF THE PanCREAS
Cohort studies
Excess risks of cancer of the pancreas ranging from 1.5 to 2.6, were found in four studies and in the tyre curing department of the Akron, Ohio plant. Lower excess risks were found in one additional study and in the reclaim department of the Akron, Ohio...
Cohort studies
No excess risk was found in four cohort studies\(^24-28\) and in the industrial products department of the Akron, Ohio cohort.\(^18\)

Cancer of the Larynx
Figure 5 shows the results of the studies on laryngeal cancer.

Cohort studies
Low or moderate excess risks were found in all seven studies reporting results on laryngeal cancer,\(^16-28,30,32-33\) although 95% CIs were wide. The highest risks were found for workers in Russia\(^32\) and Poland.\(^30\)

Case-control studies
Two case-control studies in the United States found a high risk among rubber industry workers.\(^29-30\)

Non-melanocytic Skin Cancer
Cohort studies
An excess risk was found in three studies\(^15,16,27,28\) but no excess was seen in the remaining four cohort studies that reported results for this cancer.\(^24,30,32,33\)

Case-control studies
Excess risks among workers exposed to rubber stock (OR 2.2) and lubricating oils (OR 6.5) were found in a nested case-control study in rubber industries in Akron Ohio.\(^39\)

Brain Tumours
Cohort studies
An excess risk was found in five studies.\(^15,17,27,30,32,33\) No excess risk was found in four other studies.\(^24,28,31,33\)

Case-control studies
A higher than twofold excess risk was found in two studies in Canada\(^85\) (OR 9.0) and the United States\(^86\) (OR 3.5). No excess (OR 0.4) was found in a nested case-control study in the Akron, Ohio cohort.\(^40\)

Prostate Cancer
Cohort studies
An excess risk was found in four studies\(^17,27,32,33\) and in the industrial products department of the Akron, Ohio cohort.\(^18\) No excess risks were found in three other studies\(^16,24,30\) and in the aerospace and reclaim departments of the Akron, Ohio cohort.\(^19,21\)

Case-control studies
No excess risk was found in two case control studies that reported risk for employment in the rubber industry.\(^31,32\)

Kidney Cancer
Cohort studies
A low excess risk not exceeding 1.5 was found in three studies.\(^28,30,32\) and in the reclaim department of the Akron, Ohio cohort.\(^21\) No excess was found in two cohort studies.\(^16,24\) and in the industrial products department of the Akron, Ohio cohort.\(^18\)

Case-control studies
A higher than twofold risk was found in two studies.\(^33,34\)

Other Cancers
An excess risk of thyroid cancer was found in the BRMA cohort (SMR 1.7, 9 deaths)\(^24\) and in an Italian cohort study (SMR 5.0, 1 death)\(^27\); no excess was found in a study in Russia.\(^32\) Excess risks have been described sporadically both in cohort and in case-control studies for other neoplasms such as cancers of the

Figure 4 Stomach cancer risk in workers employed in the rubber industry. Odds ratios (95% CIs) for studies including >5 exposed cases.

Figure 5 Laryngeal cancer risk in workers employed in the rubber industry. Odds ratios (95% CIs) for studies including >5 exposed cases.
nasopharynx, the oropharynx, and the uterus, malignant melanoma, and soft tissue sarcoma.

Discussion

A moderate excess risk of cancer of the bladder and the lung and of leukaemia was found in most studies of workers employed in the rubber industry in different regions of the world. A small but consistent excess risk was found for laryngeal cancer. There was an indication of an excess risk of other neoplasms—such as lymphomas and pancreatic and brain tumours—but results were not consistent between studies. There was little evidence of an excess risk of stomach cancer. Detailed exposure information was lacking in nearly all available studies and an evaluation of cancer risk by specific exposures and processes within the rubber industry was, therefore, not possible.

We based our conclusions on the consistency of results across studies and on the magnitude of the reported risks. We did not pay much attention to statistical significance, nor did we attempt to apply techniques of meta-analysis and calculate pooled risk estimators. Firstly, many studies were small and although they identified excess risks, they had little power to detect significant results. For example, in very few studies was the excess risk of leukaemia significant at the conventional α level of 0.05. It is possible, however, that the excess risk of leukaemia is causally related to occupational exposures in this industry, given the recorded widespread exposure to solvents in the past. By contrast, small effects—such as the 10%–20% excess risks for oesophageal and stomach cancer, which in the large BRMA cohort in the United Kingdom were significant—could have resulted from confounding by socioeconomic status. Secondly, the heterogeneity of exposure circumstances within and between plants, differences of occupational and exposure classifications used in the studies, and differences in study design, complicates the calculation of pooled estimators for specific exposures or departments, and makes the calculation of a single summary risk estimate uninformative. Finally, although nearly all cohort studies presented results for cancers of the bladder, lung, stomach, pancreas, and leukaemia and lymphomas, reporting was incomplete for other cancers. Reporting for other sites may have been biased with positive findings overreported even when based on small numbers. A similar argument may hold true for case-control studies and the reporting of risks for employment in the rubber industry.

A moderate excess risk of bladder cancer was found in most of the new studies. This excess risk had been associated in earlier studies with exposure to an antioxidant contaminated with β-naphthylamine, and removal of this agent from rubber plants in the United Kingdom has been shown to prevent the occurrence of further cases of bladder cancer. However, in many recent studies conducted in both developed and developing countries, an excess cancer risk was found among workers with no recorded exposure to β-naphthylamine. This indicates that other agents in this industry may also be associated with the occurrence of bladder cancer among rubber workers. This finding implies that the removal of a single agent from this industry, although important for diminishing the risk in some plants, may not suffice to eliminate the excess risk of bladder cancer found among workers of this industry in several countries.

In the previous IARC evaluation, the excess risk of leukaemia was considered to be real and was attributed to exposure to solvents, particularly benzene. Results from most recent studies tend to confirm this conclusion. The magnitude of the risk varied between studies, with the highest risks found in studies conducted in North America. A variety of solvent mixtures, with or without benzene, have been used in rubber cements, glues, binding, and release agents. As for bladder cancer, these findings suggest that removal of a single agent (benzene) may not eliminate the risk of leukaemia in the entire industry because of widespread exposure to various carcinogens.

Recent studies tend to confirm the presence of a moderate excess risk of lung cancer, and on the whole results are now more consistent than at the time of the IARC evaluation. Relative risks were >50% in many cohorts, indicating that the excesses found are unlikely to be due solely to confounding by smoking or other lifestyle factors.

An excess risk of stomach cancer was identified in earlier studies of workers in the rubber industry, and has been reported in a recent case-control study from the United Kingdom. Cohort studies reported after 1982 either do not confirm the presence of an excess risk of stomach cancer in this industry or suggest the presence of only a slight excess risk. A significant excess risk was found in the largest workers cohort. The risk, however, ranged between 1.1 and 1.3, and is well within the margins of an effect of confounding by socioeconomic status.

Findings for other cancer sites, with the exception of laryngeal cancer, are not consistent between studies, or derive from too few studies. Excess risks found in single studies may be related to specific exposure circumstances occurring in particular rubber plants. One of the most important problems, however, in evaluating findings for other cancer sites, is that reporting may have been incomplete in cohort and case-control studies, with possible preferential reporting of positive findings. The overall findings, therefore, do not provide clear support of excess risks for most of the remaining cancers. The available evidence does not allow an evaluation of the specific agents that may be associated with the increased risk for laryngeal cancer in this industry.

Exposure levels to chemical agents in the rubber industry have decreased in recent years, at least in industrialised countries. It is consequently plausible that rates of disease among the workers would have also diminished. Existing epidemiological studies, however, have not shown an elimination of an excess cancer risk. There are some indications that risks are higher.
among workers employed in early years and in less developed countries where presumably exposures are less controlled. The few recent studies of workers employed after the 1960s do not have enough power yet to detect potential moderately increased rates of disease. Even these few studies refer to exposure levels in the 1960s which were different both in level and in type than exposures in modern rubber plants. Also, it should be stressed that exposure patterns in industrialised countries may not be representative of rubber plants in newly developed or developing countries. The sparse available data indicate that exposure levels are higher in industries of such countries where many sectors of this industry, such as tyre production, tend to be transferred.\(^{119}\)

Recommendations and conclusions

Existing studies in the rubber industry have shown the presence of a cancer risk. The potential for diminishing this risk by controlling exposures has also been shown. A common characteristic of existing studies is the absence of detailed exposure assessment and the link between specific exposures and specific risks. New epidemiological studies in this industry should preferably rely on cancer incidence rather than mortality statistics and should provide a detailed evaluation of specific occupational exposures. New studies should also focus on new (or newly identified) risks, such as the possible increase in laryngeal cancer. Biochemical epidemiological techniques should be incorporated both for the evaluation of exposure—for example, measuring aromatic amine haemoglobin or DNA adducts—and of possible interactions between genetics and the environment—for example, examining genetic polymorphisms.\(^{118,119}\) Their role relative to occupational exposures in workers in this industry has been little evaluated.

In conclusion, findings of epidemiological studies in the rubber industry published after 1982 indicate that there is a moderate increase of the risk of neoplasms of the urinary bladder, lung, larynx, and leukemia. There was a considerable variation of the risk estimates between studies, but the excess risks were found in many countries and in many different departments indicating that they may be causally related to occupational exposures in this industry. Evidence for other cancer sites, including the stomach, is inconsistent and possibly affected by reporting bias. Examination of new cohorts of workers in the rubber industry, incorporating detailed methods for assessment of exposure and examining various genetic susceptibility markers, may contribute to assessing present risks in this industry and associate these risks with specific exposures.

Cancer risk in the rubber industry

Medical editors’ trial amnesty

As described in an editorial in the British Medical Journal, medical editors of nearly 100 international medical journals are taking action to try to ensure that the results of unpublished randomised controlled trials become available to be included in systematic reviews. This could have important benefits for patient care.

Any reader who would like to take up this opportunity to register the results of a trial that did not get published can do so on a special unreported trial registration form. Copies are available from the Occupational and Environmental Medicine editorial office.

I do not expect that many Occupational and Environmental Medicine readers will need to take up this offer, given the nature of our field, but perhaps I will be proved wrong.

ANNE COCKCROFT
Editor

Cancer risk in the rubber industry: a review of the recent epidemiological evidence.

M Kogevinas, M Sala, P Boffetta, N Kazerouni, H Kromhout and S Hoar-Zahm

doi: 10.1136/oem.55.1.1

Updated information and services can be found at: http://oem.bmj.com/content/55/1/1

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/