fibres, the mass, the lung burden (retained mass at first sacrifice point), the half time of WHO fibres, and the relative relation between these and the half time of inert material and inert non-soluble fibre material.

There was no correlation between the instilled mass and the retained mass. The retained mass is therefore used in the further evaluation.

The measured half time values except two are placed on or below the solid line representing the inert toner material. Fibres that are known to have a low dissolution rate in vitro at both pH 7.5 and pH 4.5 are placed above the line for the inert material. Two measurements give higher half times than for inert toner material at a similar dose. One of these, RCF 1, was also tested at lower lung burdens, which bring the measured half time on line with the expected values for the toner material. Most of the fibres have a half time lower than expected for the toner material. In these cases macrophage mediated clearance is only one of the acting mechanisms for clearances.

If the half times are evaluated against the volume based relation no results fall above the line representing an inert non-soluble fibre material (dotted line in figure).

Two examples of measurements of the same fibre type at different instilled and retained masses are given in the table. At least for the RCF 1 there seems to exist a significant dose dependency, which allowed the dose dependency for toner. In both examples a lower retained mass gives a lower relative half time.

In conclusion, it seems that differences in the retained mass cannot be ignored in the evaluation of intratracheal data. A constant instilled mass does not ensure constant retained mass. As the clearance in the first days of the test is out of control, it is not possible to take into account the different clearance mechanisms in this period. As it is a practical procedure to ensure a constant retained mass for tests of different fibre types it seems necessary to find a way to make an appropriate mass correction. This should be based on tests which are designed to elucidate the problem. Until results of such tests are available, it might be appropriate to use the half times for the tested fibre type relative to the half time for an inert material at a similar dose to characterise the biopersistence of the fibre. Other reference materials than toner may be considered, as a dose dependency of the calculated retained values for the two fibres tested twice still remains.

SOREN LUND JENSEN, MARIANNE GULDBERG, ROCKWILF INTERNATIONAL A/S, DK-2940 HOFHUSN, DENMARK

Author's reply—Thank you for the opportunity to respond to the letter of Jensen and Guldberg regarding application of our proposed linear relation between the elimination half time (T) and lung burden (m) to fibrous particles. The form of this linear relation derived from an applying kinetic model analogous to Michaelis-Menton kinetics for enzymatic reactions. Jensen and Guldberg empirically compared the linear relation which we had reported for photocopy test toner (PTT, derived from inhalation data of Muhle et al.) with values of half time and lung burden for a variety of mineral fibres instilled intratracheally in rat lungs. With minor exceptions, values of half time for the fibres were considerably smaller than those predicted by our model for PTT at a given lung burden. They concluded that inert particles such as PTT are more biopersistent than the mineral fibres, possibly due to the effects of disintegration and dissolution of the fibres in the lung.

Jensen and Guldberg did not evaluate the linear relation between half time and lung burden for the data which they presented in the table of their letter. As such an evaluation would allow more direct comparisons to be made between fibrous and non-fibrous aerosols, we performed the necessary calculations, and briefly summarise the results.

After regressing half time upon lung burden for the pooled data presented by Jensen and Guldberg in the table, we found the following relation:

\[T = 25 \times 1 + 81.2 m \]

with intercept \(a = 25 \times 1 \) and slope \(b = 81.2 \times 1 \). Although the linear relation was highly significant (\(P = 0.004 \)), the regression coefficient of \(r = 0.63 \) was considerably smaller than that which we found previously for non-fibrous insoluble particles (\(r = 0.99 \)). Further, the residuals under the linear model indicated some heteroscedasticity, suggesting that the variability of half time was somewhat dose dependent. This less than optimal fit of the linear model to the pooled data could be due to differences in the various experimental protocols or the different types of fibrous particles which were included in the table. We recommend that future applications of our model to fibrous dusts be evaluated with data that range a cover of burdens for single fibre types so that differences between fibres can be evaluated.

Assuming that the estimates of \(a = 25 \times 1 \) days and \(b = 81.2 \times 1 \) days/mg, from the pooled data, provide overall measures of fibre clearance, it is interesting to compare them with the corresponding estimates for non-fibrous aerosols. Firstly, \(a \) represents the intrinsic clearance half time for a particular dust when the burden approaches zero and the lungs are functioning normally. As the intrinsic clearance half time for fibrous particles (25.1 days) was much smaller than that for non-fibrous insoluble particles (77.8 days), we agree with Jensen and Guldberg that mechanisms other than the alveolar clearance—for example, disintegration and dissolution, must have played some part in clearing fibres from the lungs. Secondly, we regard the parameter \(b \) as a measure of the possibility of a particular particle for inhibiting macrophage mediated by alveolar macrophages. It is reasonable to expect that particles with different potentials for impairing clearance (for example, due to the cytotoxicity) would have different \(b \) and our work provided some evidence of this behaviour for non-fibrous dusts. Comparison of the estimated \(b \) for the pooled fibrous particles (81.2 days/mg) with that for PTT (80.3 days/mg) suggests that mineral fibres were about as potent as PTT in impairing clearance mediated by macrophages. Again, it would be important to estimate \(b \) for each type of fibrous particle to allow possible fibre-specific differences in potency.

S M RAPPAPORT
RONCHI HENRY YU
DEPARTMENT OF ENVIRONMENTAL HEALTH SERVICES,
UCLA SCHOOL OF PUBLIC HEALTH,
Los Angeles, CA, 90095

Electromagnetic fields and cancer: incorrect citations

Editor—Several articles that have appeared in the British Journal of Industrial Medicine (for runner to Occupational and Environmental Medicine) in recent years have either been cited incorrectly or used in contexts that are misleading in other publications. As Feinstein and others have mentioned, "The error is grievous if the source statement is either unsupportive or contradictory to what has been claimed for it." My letter considers misleading citations relating to alleged hazards of electromagnetic fields (EMFs).

Some incorrect citations have been summarised previously. Specifically, several studies were reported to indicate a significant association between exposure to EMFs and cancer. In these studies, however, no unique exposure to EMFs in electrical or telecommunications workers was mentioned by any of the authors. Furthermore, in most studies, there were not even any attempts to assess exposure, and, in fact, the studies were not

designed to investigate effects of EMFs. Factors possibly associated with cancer were: work environments where soldering was practised, the use of chemicals and solvents, and piercing and sawing asbestos plates used for thermal insulation. When other authors have cited these studies, the term "exposure to EMFs" should have been replaced by "working in electronics-related industries". This is an important distinction and not just a matter of semantics.

Articles continue to be cited incorrectly. Erren et al. stated that Vägerö and Olin showed that EMFs "have been associated with lung cancer". Wilson and Stevens summarised studies already mentioned and a more recent one as being suggestive of an association between exposures to EMFs and cancer. Henshaw et al. and Miyakoshi et al. cited Guenel et al. as well as some of the authors of this association. Guenel et al. noted, however, that the risk was mainly in electricians in installation works and iron foundry workers. Besides EMFs other exposures should be considered as possible aetiological agents. Fear et al. listed some of these studies as showing that "cancers have been previously linked with exposure to electromagnetic frequency EMFs." Again, "working in electronics-related industries" is not equivalent simply to "exposure to EMFs".

Rasbe and Wong noted that "electrical exposure in one of the studies' mentioned above actually consisted of people with a graduate degree in electrical engineering. As the authors noted, "an academic degree is obviously not a good measure for EMF exposure."

It is misleading to cite references that do not support the alleged associations with EMFs with cancer. Improper citations are not the original authors in the Journal, who reported their results with all the necessary caveats regarding correct interpretations of their findings. Hopefully, in the future, there will be fewer errors of citation of these authors (the opinions are those of the authors and do not necessarily state or reflect those of the US government.)

JAMES R JAUCHEN
Radiofrequency Radiation Division, Occupational and Environmental Health Directorate, US Air Force Armstrong Laboratory, 8308 Hawth Road, Brooks Air Force Base, Texas 78235-5301, USA

International Conference 13-18 September 1997, Crans-Montana, Switzerland

Professional development courses

- Risk reduction by substitution
- Sampling and measurement technology
- Asbestos removal
- Control of airborne pollutants in the workplace
- Video exposure monitoring for hazard recognition
- Noise
- Vibration
- Practical and effective control measures
- Exposure assessment in occupational epidemiology

Plenary sessions

- Exposure to allergens
- Biological monitoring of pesticides: their control
- Occupational hygiene in office work
- Personal protective equipment
- Biological monitoring

Special workshops on various topics including training in risk, exposure assessment, and risk management.

The index is heavily cross-referenced and occupies 367 pages each of two closely printed columns.

As to single volume competitors: the Merck Index is the obvious choice. Merck offers wider coverage but less information of immediate use to the occupational physician.

If you wish to order, or request further information regarding the titles reviewed here, please write to the Regional Bookshop, PO Box 295, London W1X 19TE. Tel: 0171 383 6244. Fax: 0171 383 6662. Books are supplied post free in the UK and for British Forces Posted Overseas addresses. Overseas customers should add 15% for postage and packing. Payment can be made by cheque in sterling drawn on a UK bank, or by credit card (Mastercard, American Express) stating card number, expiry date, and your full name. (The price and availability are occasionally subject to revision by the Publishers.)
Electromagnetic fields and cancer: incorrect citations.

J R Jauchem

Occup Environ Med 1997 54: 359-360
doi: 10.1136/oem.54.5.359-a

Updated information and services can be found at:
http://oem.bmj.com/content/54/5/359.2.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/