CORRESPONDENCE

Health hazards while fishing in heavy weather

Editor—Fishing crews are frequently exposed to heavy physical stress and strain while working, and the risk of death is high.1,2 Fishing keeps going in all weather, but the hazards to health, arising during work in heavy weather, have not received much notice. After a series of violent storms in January 1993 we were asked to study this problem more closely. A detailed questionnaire was devised to elucidate the level of exposure and the men’s own impression of the health hazards involved. Thirty nine fishermen taking part in a conference in December 1993 filled in the questionnaire. They were asked to answer questions regarding the worst situations they had ever experienced. Their mean (range) experience as fishermen was 21 (5–45) years. All were employed as ordinary members of crew, although eight had acted temporarily as substitute skippers. The respondents’ mean age was 43 (26–66). The types of boat most had served on were Danish seiners of 20–60 tonnes, gill netters of 10–45 tonnes and trawlers from 20 to 300 tonnes. The waters most frequently fished were in the North Sea.

The worst gales they had fished in were estimated to have been from 10 to 40 m/s (78 knots). These worst experiences were most frequent in autumn and winter. The vessels were frequently too small for the seas and the wind conditions, with a great deal of rolling as a consequence. Some respondents wrote that there was not enough room to work and that they were badly cramped. Among the dangerous situations mentioned were sailing in and out of harbour, freak waves, and icing up. Seas sometimes break right over the ship, and it is difficult to hang on. About three quarters of them thought that work was harder now. Casting and hauling in gear were the hardest tasks. Seasickness was no particular problem in heavy weather, but some of them complained of headaches, dizziness, and tension. Over half of them found it difficult to sleep or rest because of rolling, noise, and vibration. A few wrote that they had been frightened during hurricanes, when freak waves came over, or when casting or hauling in gear. There were frequent complaints about the musculoskeletal system, including back trouble.

About a third thought that fishing in heavy weather could be a reason for giving the job up. Families, too, expressed anxiety about fishing. When asked what ought to be done, several people said that the quota system should be changed and that the parsous financial state of the fishing industry ought to be improved. The fishermen also said that there ought to be a limit to the kind of weather they were allowed to fish in—for example wind speeds of around 20–25 m/s (40–50 knots). The hazards arising from fishing in heavy weather come on top of the stresses and strains already existing. Lack of sleep and rest affect safety at sea and increase the risk of injury. The body is especially stressed by the vessel’s rolling, and there is a risk of damage to the lumbar region even in good weather. This, together with the other health hazards, force one to the conclusion that fishing in very heavy weather should be avoided. As well as which, many ships are lost or badly damaged every year as a result of the enormous forces of the sea. Large numbers of ships have been laid up since 1987, while at the same time the number of days spent fishing by the remainder of the fleet has increased.3 This confirms the fishermen’s own impression that they are having to go out in heavy weather more often than before. Reduced scope for fishing also forces crews to go farther out to sea in smaller vessels which were not built for it.4 Improvements in the weather forecasting system would help, but the entire way in which the fishing industry is organised must be regarded as a contributory factor to the current situation. The quota system must be amended to take special account of health and safety in the working environment aboard fishing boats.5 Individual transferable quotas have recently been proposed to make it unnecessary for fishermen to go out in all weather.6 Classification of vessels by the kind of conditions they are fit for would also be a relevant move. This small pilot study has only given a superficial impression of the workloads and more detailed studies are necessary. This applies not only to the physical strain, but also to the mental strain, both short term and long term.

I thank Mr E H Pedersen, fishing technologist and Ms G van der Horst, psychologist for their valuable assistance.

OLAF C JENSEN
Institute of Maritime Medicine,
South Jutland University Centre,
Nils Bohres Væg 9,
DK-6700 Denmark


Upper aerodigestive cancer in battery manufacturers and steel workers exposed to mineral acid mists

Editor—Coggon et al1 conclude that their findings are consistent with those of other studies indicating a hazard of upper aerodigestive cancer from acid mists. In fact, concern from acid mists has focused primarily on respiratory tract cancer and the findings in this article cast doubt on the conclusions of previous studies. The standardised mortality ratios in the cohort study were 0·48 and 1·0, respectively for larynx and lung and there were no cases of nasopharyngeal cancer among exposed workers. This is in notable contrast to odds ratios of up to 13 for cancer of the larynx reported in cited articles.

In the nested case-control study it is interesting to note that all additional cases that were identified were exposed workers and no additional cases were found among unexposed workers. Even so, few additional cases of respiratory tract cancer were identified. The most frequently identified case was that of lip cancer (three live cases). Other living cases included cancers of the retromolar area (1), nasopharynx (1), larynx (2), and nasal sinus (1). Combining cases such as cancer of the lip and mouth with those of the larynx and nasopharynx for analysis seems to be a questionable practice. This is especially true for cancer of the lip which has different risk factors such as sun exposure and pipe smoking. Excluding the cases of cancer of the lip from the analysis shown in their table 5 would almost certainly result in an odds ratio near unity for the 2:0 they report for the group with five years or more exposure to high levels of acid mist. Also, there are four upper aerodigestive cancer identified in the non-exposed workers in table 3 but only three are reported in tables 4 and 5. It seems that one of the non-exposed cases was mistakenly transferred to the exposed category. Switching this case back to the proper category would also cause the odds ratio to be closer to unity.

As well as the negative findings in the cohort study there are other reasons to doubt the evidence used by the International Agency for Research on Cancer (IARC) for their classification of “occupational exposure to strong inorganic acid mist containing sulphuric acid” as a known human carcinogen. The case control study reporting the highest odds ratios for sulphuric acid exposure was of larynx cancer. The cancer of the larynx was the article of Soskolne et al. They reported odds ratios for non/low, medium, and high exposure as 1·0, 4·6, and 13·4.1 However, when this same data were reanalysed with total cumulative dose, instead of estimated average annual dose for years exposed, the odds ratios were 1·0, 0·58, and 0·70 respectively.7 When the results of such studies seem to be so radically dependent on the type of analysis used one should question the validity of the positive findings. This is especially important for the Soskolne study where use of the more traditional cumulative dose yields negative results. All of the other studies used by IARC had significant flaws ranging from lack of exposure verification or measurement, confounding exposures such as nickel, alkyl sulphates, asbestos, etc and inadequate control for smoking and alcohol consumption and no control for the synergistic interaction of smoking and heavy alcohol use.

JAMES A HATHAWAY
Rhone-Poulenc, Inc,
1385 Post Road,
Princeton, NJ 08543,
USA

Health hazards while fishing in heavy weather.

O C Jensen

Occum Environ Med 1997 54: 141
doi: 10.1136/oem.54.2.141