the 1960s. Access was given to the employ-
ees’ role although employment details during the war were virtually non-existent. We think that the information gathering process when taken together with the records of the coroner and the histopathology review was as detailed as any other similar study in exis-
tence.

As the “non-exposed” group was classi-
fied as such by history it is obvious to most readers that we are unable to state how they acquired excessive amounts of amphibole fibres within their lung tissues. If these eight cases with high amphibole concentrations are deducted the rate of mesothelioma becomes 1.6 million per year which is quite close to the generally estimated background rate. Greenberg seems to be unaware that high aspect ratio amphibole fibres have been found in the pleura. By contrast with ani-
mal studies, which rely on the administra-
tion of enormous doses and overload of the respiratory defences, human studies have been remarkable consistent in showing a strong association between amphibole expo-
sure and mesothelioma whereas chrysotile it has been weak or non-existent.1 Ever in chrysotile miners and millers, in whom there have been few mesotheliomas, the evidence indicates that they were related to translocation rather than chrysotileexpo-
sure.4 To the best of our knowledge the forthcoming review of chrysotile by the International Programme on Chemical Safety will not present any new evidence although it might give a different opinion. Other reviews conclude that amphiboles have a much greater potency than chrysotile for producing mesothelioma.14

A T EDWARDS
Royal Halifax Infirmary, Halifacs, Virginia
D WHITAKER
Queen Elizabeth II Medical Centre, Perths, Western Australia
K BROWNE
Formerly Medical Advisor to Cape Industries, Locester House, North Creake, Norfolk
P D POOLEY
School of Engineering, Division of Materials and Minerals, University of Wales, Cardiff

Department of Histopathology and Environmental Lung Disease Research Group, Llandough Hospital, Penarth, South Glamorgan

4 McDonald JC, McDonald AD. Chrysotile, tremolite and mesothelioma. Science 1995;267:

Biomarkers of exposure to low concentra-
tions of benzene: a field assessment

Editor—Ong et al1 present data on the rela-
tion between concentration of benzene in ambient air and urinary muconic acid con-
centration. With the formula they provided in figure 3, the urinary concentration of muconic acid can be calculated if exposure to 1 part per million (ppm) is 144-4 or 128-6 mg creatinine, depending on whether log or the base 10 or natural log is used, respec-
tively. This number seems to be very low compared with that given in many studies which are usually in the range of >1000 ng/ml creatinine.5 It will be helpful if Ong et al could provide some explanation for this apparent discrepancy.

Author’s reply—The overall objective of our article was to evaluate the usefulness of five common metabolites (at low levels (<0-25 ppm) exposure to benzene and as stip-
ulated in the conclusion all the biomarkers were unable to provide sufficient specificity for biomonitoring at the low concentration range. All the methods are not to be used for estimation of exposure to low level environmental exposure to ben-
zene, particularly <0.25 ppm. Our earlier data shown that urinary trans-muconic acid could be useful for environmental exposure to benzene >0.5 ppm; with a calculated exposure to 1 ppm benzene, about 0.9-1.7 mg/ml creatinine would be expected at the end of eight hours of exposure.

CHOO-NAM ONG
Department of Community, Occupational, and Family Medicine
National University of Singapore

1 Ong CN, Kok PW, Ong HY, Shi CY, Lee BL, Phoon WH, Tan KT. Biomarkers of expo-
2 Lee BL, New AL, Kok PW, Ong HY, Shi CY, Ong CN. Urinary trans,trans-muconic acid determined by high performance liquid chromatography: appli-
3 Ong CN, Lee BL. Determination of benzene and its metabolites: application in biological monitoring of environmental and occupa-

Offspring sex ratios and reproductive haz-
ards

Editor—Weijin 1 and Olsen 2 write: “A concep-
tion closely associated with ovulation has been suggested to result in more boys”. There seems to be an error here because to substantiate this statement, these authors refer to France et al3 who write: “The birth sex ratio favored males when intercourse pre-
ceded ovulation/fertilization by two days or longer”. Indeed the data of France et al give some corroborative evidence to the conclusion of Gray et al4 who, after a meta-analysis of human data, suggested that the regression of off-
spring sex ratio (proportion male) on time of insemination within the cycle is U shaped. 5I have cited evidence that:

(1) There is a positive relation between offspring sex ratio and paternal coital rate in several mammalian species (including humans).

(2) Under some models, coital rate would determine the time of fertilisation within the cycle.

(3) Distributions of the sexes within lit-
ters of several mammalian species suggest that F males (the probability that a zygote is male) varies from one zygote to another within litters.

Interpretation of the data is not estab-
lished, but it seems likely that the variation of sex with time across the female cycle is partially controlled by the varying female hormone concentrations across that time. In particular such an interpretation can be con-
strued to explain Weijin and Olsen’s report of a significant decline of offspring sex ratio with waiting time to pregnancy. This confirms the data of Renkonen et al and may be caused by the different mean times of fertil-
isation within the cycle associated with differ-
ent coital rates (which decline very rapidly during the first year of marriage).6

If I am right, the sexes of mammalian (including human) offspring are partially controlled by the hormone concentrations of both parents which are controlled by the time of fertilisation.4 So deleterious environmental agents which are endocrine disruptors may show themselves in biased offspring sex ratios. Thus it may be expected that off-
spring sex ratios could be used as indicators of adverse occupational exposures to men and women.

WILLIAM H JAMES
The Galton Laboratory, University College London, W1T 5HT

2 France JT, Graham FM, Gosling L, Hair P, Koos BS. Characteristics of natural concur-
tual cycles occurring in a prospective study of sex preselection: fertility awareness symp-
toms, hormone levels, sperm survival and pregnancy outcome. Int J Fertil 1992;37:
144-55.
5 James WH. The cycle day of conception and sex ratio of off-
7 James WH. The homoeon effect on marital coitus. Journal of Sex Research 1981;17:
114-23.
8 James WH. Decline in coital rates with spous-
9 James WH. Evidence that mammalian sex ratios at birth are partially controlled by parental hormone levels and time of con-

BOOK REVIEWS
Book review editor: R L Maynard

If you wish to order, or require further infor-
mation regarding the titles reviewed here, please write or telephone the BMJ Bookshop, PO Box 350, London WC1H 9TE. Tel: 0171 383 6244. Fax: 0171 383 6662. Books are supplied post free in the UK and for British Forces Posted Overseas addresses. Overseas customers should add 15% for postage and packing. Payment can

One of the aims of this handbook, declared by the editor in his preface, is to christen a new medical specialty: Stress Medicine. Cooper qualified in psychology and business studies in California and now holds the chair of organisational psychology at Manchester University's Institute of Science Technology. He is coeditor of the journal Stress Medicine, and is well known for his many publications in this field.

The book constitutes a gold mine of reference for anyone wishing to chart the development of the stress concept, from the early work of the physicians who noted that diverse physical challenges (such as noise, cold, heat, pain, toxins, blood loss, x-ray films, etc) produced certain physiological disturbances in common. Hans Selye borrowed “stress” from engineering usage to denote these shared, non-specific distortions of normal functioning. This was an unfortunate choice, which has caused much confusion: to an engineer, it is the forces applied to a structure (a bridge for example) which comprise stress; the resulting strain as seen by strain gauge used the wrong word. As he himself later acknowledged, “strain” would have been the right term. Nevertheless stress has persisted, albeit as something of a chameleon with shifting fashions.

Most of the 19 chapters which comprise the book are by psychologists, although some contributions are by other fields and is also included. Detailed chapters are devoted to a variety of adverse conditions which can exert stressful pressures: cancer, ischemic heart disease, HIV/AIDS, and other chronic illnesses. These, as described, often introduce a strain on individuals, well, bring their burdens of anxiety and depression, which worsen further the quality of life. There is detailed consideration of the need for social support and techniques for coping.

It is much more difficult to show the reverse process: the ability of stress to produce organic disease. What is clear is that emotional factors may play some part in the onset and course of many medical conditions. However, the most convincing evidence that stress may be a significant aetiological factor for a specific illness concerns the acute myocardial infarction and psychological variables. Some of the authors who contribute to this book casually include other conditions (such as essential hypertension) for which, on the basis of much less adequate evidence, emotional factors have been claimed to be important primary causes. This book does not always provide adequate critical assessments of the evidence which it presents; instead, the mission of the authors seems (with some encouraging exceptions) to be to accumulate everything which can be traced in the scientific literature in support of the claimed aetiological relation, to add to their case. It would be unfair to liken the approach to that of the few original advocates of psychosomatic medicine between 1930 and 1950, who produced an immense, tendentious literature supporting the case for the alleged emotional origins of essential hypertension, thyroiditis, myasthenia, peptic ulcer, ulcerative colitis, neurodermatitis, and asthma. But it is unfortunate that some of the literature on stress reviewed in this handbook (which has not been presented with more rigorous criticism.

The book offers few practical tips to occupational physicians who advise companies on personnel policies aimed at reducing the adverse effects of restructuring and “downsizing”, without jeopardising economic objectives. Professional advisers are only too aware of the reality of stress in organisations which are undergoing such changes. Uncertainties about job security, workload, roles, and self esteem give rise to anxiety and depression, and today general practitioners increasingly certify that stress is the cause of the resulting sickness. Those to whom senior managers and personnel directors must answer are concerned above all with financial viability, but many are also responsive to practical, cost neutral proposals for preserving the morale of the workforce.

Although the handbook contains little direct practical guidance, some of the academic work which it reviews can nevertheless be interpreted in helpful terms for this purpose. An example will illustrate this. An employee’s performance generally increases, up to a point, as pressure of work goes up: but a critical point is reached beyond which increasing pressure results in least output, and may damage performance irreversibly. Again, there is an engineering analogy: increasing tension in a metal sample produces reversible stretching until the elastic limit is exceeded, after which irreversible changes and breakage occur. In employees, the critical point differs from person to person. The changes underway in many companies have the effect of removing people whose critical point is too easily reached. But there are alternatives: for example it is now clear that, if people are allowed some control over how they do their jobs, they are less at risk of experiencing stress pressures, are imposed with little flexibility or empowerment.

Goodman and Gilman (G and G) was described many years ago as the “Blue Bible of Pharmacology”—this edition is black but still the best textbook of pharmacology and therapeutics available. Occupational physicians wishing to understand toxicological and pharmacological principles and needing a reference source for information on drugs and chemicals, will find this edition an excellent addition to their libraries.

The editors acknowledge that this is the first edition not to be edited by a Goodman or a Gilman. This is a very good move, preserved the best features of earlier editions while adding many excellent new features. These include several new chapters (including one on gene therapy), synopses at the opening of each chapter, and a prospectus setting out likely future advances at the end of each chapter. This latter introduction has a valuable: not only is G and G now up to date, but it also provides the information which you may need next year.

In reviewing this book I have looked closely at the familiar group of chapters on the autonomic (ANS) and central nervous systems (CNS). This has been a fascinating experience, especially with regard to the CNS. The group of chapters starts with an account of neurotransmitters (the fold-out diagram of the ANS remains) which is splendidly up to date but which still includes adequate accounts of the historical development of the field. This has always been a feature of G and G and it is good to see that it has not been lost. The diagrams explaining neurotransmission have been improved and now involve a modest use of colour. This is helpful and attractive. Details of such esoteric subjects as structure of the “locking complex” for neurotransmitters (do you know what neurexin and syntaxin are?) are rapidly assimilated from the excellent diagrams. One would assume that nicotinic and musolinic receptors are discussed in detail. The referencing of this chapter is as up to date as one could hope in a book of this size: references from 1994 and one from 1898 are included.

The chapter on anticolinesterase (AChE) agents has been an old friend for 15 years. Palmer Taylor has taken over the authorship of this chapter from Kremers and this is a valuable series of diagrams illustrating the interaction between the AChE molecule and the anti-AChE molecule. A useful note on Alzheimer’s disease and the possible use of anticholinesterase agents has been included. The bibliography of the chapter has been shortened and it is odd that Koele’s masterpiece (Handbuche der Experimentellen Pharmakologie, 1963) and Ballantyne and Mers’ more recent volume (in many ways the successor to Koele’s work) do not figure more prominently.

To other chapters: those in the treatment of hypertension and ischaemic heart disease seem uniformly excellent as is that on the management of asthma. The latter stresses asthma as a predominantly inflammatory disorder and provides a concise review of the inflammatory mediator, which may be involved in its pathogenesis. The prospectus is brief, perhaps disappointingly so. As well as being a textbook of pharmacology, G and G has always been a textbook of toxicology. This edition maintains that tradition with a chapter on heavy metals and one on non-metallic environmental toxins by Klassen. The reviews, on a compound by compound basis, are short but the coverage is good and although the bibliography looks just a little dated (no Schwartz, Pope, or Dockery on particles), there are some references to works published in 1994. The book concludes with 79 chapters of tables of pharmacokinetic data dealing with about 360 drugs. This is a unique source of information.

Goodman and Gilman is a large book and this review, although long, does not do it justice. That such a book can be priced at £65 is nothing short of amazing. No doctor, pharmacist or toxicologist, or even medical student could spend £65 or many hours better than by buying this book. For those who have entered the computer age there is even a version available on CD-ROM.

R.L MAYNARD
Handbook of Stress, Medicine, and Health, 1st ed

G Diggle

Occup Environ Med 1997 54: 68-69
doi: 10.1136/oem.54.1.68-c

Updated information and services can be found at:
http://oem.bmj.com/content/54/1/68.4.citation

Email alerting service

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/