the 1960s. Access was given to the employees’ roll although employment details during the war were virtually non-existent. We think that the information gathering process when taken together with the records of the coroner and the histopathology review was as detailed as any other similar study in existence.

As the “non-exposed” group was classified as such by history it is obvious to most readers that we are unable to state with exactitude how they acquired excessive amounts of amphibole fibres within their lung tissues. If these eight cases with high amphibole concentrations are deducted the rate of mesothelioma becomes 1-6 million a year which is close to the generally estimated background rate. Greenberg seems to be unaware that high aspect ratio amphibole fibres have been found in the pleura. By contrast with animal studies, which rely on the administration of enormous doses and overload of the respiratory defences, human studies have been remarkably consistent in showing a strong association between amphibole exposure and mesothelioma whereas dust from chrysotile it has been weak or non-existent.† Even in chrysotile miners and millers, in whom there have been few mesotheliomas, the evidence indicates that they were related to tremolite rather than to chrysotile exposure.++ To the best of our knowledge the forthcoming review of chrysotile by the International Programme on Chemical Safety will not present any new evidence although it might give a different opinion. Other reviews conclude that amphiboles have a much greater potency than chrysotile for producing mesothelioma.

A T EDWARDS
Royal Halifax Infirmary, Halifax, Victoria
D WHITAKER
Queen Elizabeth II Medical Centre, Perth, Western Australia
K BROWNE
Formerly Medical Advisor to Cape Industral, Leister House, North G שנת, North America
P D POOLEY
School of Engineering,
Division of Materials and Minerals,
University of Wales, Cardiff

department of Histopathology and Environmental Lung Disease Research Group,
Llandough Hospital,
Penarth, South Glamorgan

Biomarkers of exposure to low concentrations of benzene: a field assessment

Editor—Ong et al present data on the relationship between concentration of benzene in ambient air and urinary muconic acid concentration. With the formula they provided in figure 3, the urinary concentration of muconic acid prevailed at exposure to 1 part per million (ppm) is 144-4 or 128-6 ng/ml creatinine, depending on whether log or to the base 10 or natural log is used, respectively. This number seems to be very low compared with that given in many studies which are usually in the range of >1000 ng/ml creatinine. It will be helpful if Ong et al could provide some explanation for this apparent discrepancy.

ERIC S JOHNSON
School of Public Health and Environmental Medicine, Tulane University Medical Centre, New Orleans, Louisiana, USA

Author’s reply—The overall objective of our article was to evaluate the usefulness of five common urinary metabolites for low level (mean 0-25 ppm) exposure to benzene and as stipulated in the conclusion all the biomarkers were unable to provide sufficient specificity for biomonitoring at the low concentration range. All data presented that these metabolites are not to be used for estimation of exposure to low level environmental exposure to benzene, particularly <0.25 ppm. Our earlier data showed that the urinary trans,muconic acid could be useful for environmental exposure to benzene >0.5 ppm; with a calculated exposure to 1 ppm benzene, about 0.9-1.7 mg/g creatinine would be expected at the end of eight hours of exposure.

JOHON-NAM ONG
Department of Community, Occupational, and Family Medicine,
National University of Singapore

Offspring sex ratios and reproductive hazards

Editor—Weijin Z and Olsen J write: “A conception closely associated with ovulation has been suggested to result in more boys”. There seems to be an error here because to substantiate this statement, these authors cite France et al who write: “The birth sex ratio favored males when intercourse preceded ovulation/ fertilization by two days or longer”. Indeed the data of France et al give some corroboration to the conclusion of Gray who, after a meta-analysis of human data, suggested that the regression of offspring sex ratio (proportion male) on time of insemination within the cycle is U shaped. I have cited evidence that:

(1) There is a positive relation between offspring sex ratio and parental coital rate in several mammalian species (including humans).

(2) Under some models, coital rate would determine the time of fertilization within the cycle.

(3) Distributions of the sexes within litters of several mammalian species suggest that F sex (the probability that a zygote is male) varies from one zygote to another within litters.

Interpretation of the data is not established, but it seems likely that the variation of the sex ratio across the female cycle is partially controlled by the varying female hormone concentrations across that time. In particular such an interpretation can be constructed to explain Weijin and Olsen’s report of a significant decline of offspring sex ratio with waiting time to pregnancy. This confirms the data of Renkonen and may be caused by the different mean times of fertilization within the cycle associated with different coital rates (which decline very rapidly during the first year of marriage†).

If I am right, the sexes of mammal (including human) offspring are partially controlled by the hormone concentrations of both parents throughout the period of sexual fertility. So deleterious environmental agents which are endocrine disruptors may show themselves in biased offspring sex ratios. Thus it may be expected that offspring sex ratios in particular human populations may be used as indicators of adverse occupational exposures to men and women.

WILLIAM H JAMES
The Galton Laboratory,
University College London, W1 7NH

BOOK REVIEWS

Book review editor: R L Maynard

If you wish to order, or require further information regarding the titles reviewed here, please write or telephone the BMJ Bookshop, PO Box 295, London W1H 9TE. Tel: 0117 383 6244. Fax: 0117 383 6662. Books are supplied post free in the UK and for British Forces Posted Overseas addresses. Overseas customers should add 15% for postage and packing. Payment can
Offspring sex ratios and reproductive hazards.

W H James

Occup Environ Med 1997 54: 68
doi: 10.1136/oem.54.1.68-b

Updated information and services can be found at:
http://oem.bmj.com/content/54/1/68.3.citation

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/