the 1960s. Access was given to the employees' roll-though employment details during the war were virtually non-existent. We think that the information gathering process when taken together with the records of the coroner and the histopathology review was as detailed as any other similar study in existence.

As the “non-exposed” group was classified as such by history it is obvious to most readers that we are unable to state how they acquired excessive amounts of amphibole fibres within their lung tissues. If these eight cases with high amphibole concentrations are deducted the rate of mesothelioma becomes 1-6 million a year which is close to the generally estimated background rate.

Greenberg seems to be unaware that high aspect ratio amphibole fibres have been found in the pleura. By contrast with animal studies, which rely on the administration of enormous doses and overload of the respiratory defences, human studies have been remarkably consistent in showing a strong association between amphibole exposure and mesothelioma whereas chrysotile it has been weak or non-existent.1 Even in chrysotile miners and millers, in whom there have been few mesotheliomas, the evidence indicates that they were related to translocation rather than chrysotile exposure.14 To the best of our knowledge the forthcoming review of chrysotile by the International Programme on Chemical Safety will not present any new evidence although it might give a different opinion. Other reviews conclude that amphibole fibres are a much greater threat to the respiratory than producing mesothelioma.14

A T EDWARDS
Royal Halifax Infirmary, Halifax, Virginia D WHITAKER
Queen Elizabeth II Medical Centre, Perth, Western Australia K BROWNE
Formerly Medical Advisor to Cape Industries, Leicester House, North Creake, Norfolk P D POOLEY
School of Engineering, Division of Materials and Minerals, University of Wales, Cardiff

Department of Histopathology and Environmental Lung Disease Research Group, Llandough Hospital, Penarth, South Glamorgan

4 McDonald JC, McDonald AD. Chrysotile, tremolite and mesothelioma. Science 1995; 269.

Biomarkers of exposure to low concentrations of benzene: a field assessment

Editor—Ong et al1 present data on the relation between concentration of benzene in ambient air and urinary muconic acid concentration. With the formula they provided in figure 3, the urinary concentration of muconic acid is evaluated to concentration exposure to 1 part per million (ppm) is 144-4 or 128-6 ng/ml creatinine, depending on whether log to the base 10 or natural log is used, respectively. This number seems to be very low compared with that given in many studies which are usually in the range of 1000-10000 ng/ml creatinine.1 It will be helpful if Ong et al could provide some explanation for this apparent discrepancy.

ERIC S JOHNSON
School of Public Health and Tropical Medicine, Tulane University Medical Centre, New Orleans, Louisiana, USA

Author’s reply—The overall objective of our article was to evaluate the usefulness of five commonly used urinary metabolites of benzene (0-25 ppm) exposure to benzene and as stipulated in the conclusion all the biomarkers were unable to provide sufficient specificity for biomonitoring at the low concentration range. All data presented that these markers are not to be used for estimation of exposure to low level environmental exposure to benzene, particularly <0.25 ppm. Our earlier14 data showed that the urinary trans,trans-muconic acid could be useful for environmental exposure to benzene >0.5 ppm; with a calculated exposure to 1 ppm benzene, about 0-9-1.7 mg/g creatinine would be expected at the end of eight hours of exposure.

CHOON-NAM ONG
Department of Community, Occupational, and Family Medicine, National University of Singapore

Offspring sex ratios and reproductive hazards

Editor—Weijin and Olsen write ‘A conception closely associated with ovulation has been suggested to result in more boys’. There seems to be an error here because to substantiate this statement, these authors cite France and al2 who write ‘The birth sex ratio favored males when intercourse preceded ovulation/fertilization by two days or longer’. Indeed the data of France et al give some corroborative to the conclusion of Gray who, after a meta-analysis of human data, suggested that the regression of offspring sex ratio (proportion male) on time of insemination within the cycle is U shaped.

I have cited evidence that:

(1) There is a positive relation between offspring sex ratio and parental coital rate in several mammalian species (including humans).

(2) Under some models, coital rate would determine the time of fertilisation within the cycle.

(3) Distributions of the sexes within litters of several mammalian species suggest that F000 (the probability that a zygote is male) varies from one zygote to another within litters.

Interpretation of the data is not established, but it seems likely that the variation of F000 with time across the female cycle is partially controlled by the varying female hormone concentrations across that time. In particular such an interpretation can be constructed to explain Weijin and Olsen’s report of a significant decline of offspring sex ratio with waiting time to pregnancy. This confirms the data of Renkonen and may be caused by the different mean times of fertilisation within the cycle associated with different coital rates (which decline very rapidly during the first year of marriage1).

If I am right, the sexes of mammalian (including human) offspring are partially controlled by the hormone concentrations of both parents across the female cycle. Such a control would be of particular interest to those interested in effects on offspring sex ratio because research has shown that sex ratios in mice can be increased by early exposure to environmental sex ratio manipulations which are thought to disrupt endocrine systems. Such findings suggest that the sex ratio in human offspring may also be affected by factors that alter the number of male or female gametes produced in the female. This may happen through effects on endocrine systems, or through effects on the capacity for sperm production (which has been shown to vary with diet or nutrition).

WILLIAM H JAMES
The Galton Laboratory, University College London, W informing the Debate, 4 Stephenson Way, London NW1 2HE

4 James WH. Factors affecting sex ratios in A R. Theor Biol 1991;153:

9 James WH. Evidence that mammalian sex ratios at birth are partially controlled by paternal hormone levels at the time of conception. J Theor Biol 1996;180:271-86.

BOOK REVIEWS

Book review editor: R L Maynard

If you wish to order, or require further information regarding the titles reviewed here, please write or telephone the BMJ Bookshop, PO Box 295, London WC1H 9TE. Tel: 0171 383 6244. Fax: 0171 383 6662. Books are supplied post free in the UK and for British Forces Posted Overseas addresses. Overseas customers should add 15% for postage and packing. Payment can
Biomarkers of exposure to low concentrations of benzene: a field assessment.
E S Johnson

Occup Environ Med 1997 54: 68
doi: 10.1136/oem.54.1.68

Updated information and services can be found at:
http://oem.bmj.com/content/54/1/68.1.citation

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/