Exposure to styrene and mortality from non-malignant respiratory diseases

Esther Welp, Timo Partanen, Manolis Kogevinas, Aage Andersen, Tom Bellander, Marco Biocca, David Coggon, Valerio Gennaro, Henrik Kolstad, Ingvat Lundberg, Elisabeth Lyng, Alan Spence, Gilles Ferro, Rodolfo Saracci, Paolo Boffetta

Abstract
A cohort of 34 560 men and 6128 women ever employed in 660 European factories manufacturing reinforced plastic products, followed up originally to assess the risk of cancer, was used to assess the risk of non-malignant respiratory diseases associated with exposure to styrene. Mortality from pneumonia was associated with intensity of exposure to styrene, but this may have been due to chance. Mortality from bronchitis, emphysema, and asthma was not associated with styrene exposure.

Keywords: styrene; mortality; respiratory system

Styrene (C6H5) is an aromatic hydrocarbon produced in substantial quantities. Worker exposure occurs during its production and polymerisation, and in the manufacture of glass reinforced plastics, resins, and synthetic rubber.1 Styrene is taken up through the lung and the skin, and causes irritation of the respiratory tract, even at low levels of exposure (about 20 ppm). Pulmonary lesions due to styrene have been reported in humans and animals, but data on possible long term morbidity and mortality from non-neoplastic diseases associated with exposure to styrene are scanty. The effects of styrene on the respiratory tract of workers exposed to concentrations above 100 ppm (433 mg/m3) include chronic bronchitis and obstructive pulmonary changes.2 Cases of asthma induced by styrene have also been reported.1 In experiments with rats, morphological damage occurred after exposure to styrene in the upper, and to a less extent, in the lower respiratory tract.2 Respiratory effects of styrene in rats are thought to be associated with gluthatione depletion in the lungs accompanied by inhibition of cytochrome P450 dependent oxidative drug metabolism.3 We examined mortality from non-malignant respiratory diseases in relation to exposure to styrene in a large international cohort study of workers in the glass reinforced plastics industry, where highworkroom concentrations of styrene were encountered. The cohort had been established initially to assess the risk of cancer associated with exposure to styrene.4

Materials and methods
The cohort consisted of 34 560 men and 6128 women ever employed in 660 European factories to manufacture reinforced plastic products. The subjects were identified through eight research centres in Denmark, Finland, Italy, Norway, Sweden, and the United Kingdom. Cohort recruitment has been described in detail elsewhere.4 We excluded subjects unexposed or with unknown exposure to styrene (n = 5245). A total of 35 443 exposed subjects remained for the external comparisons with national reference rates. They accumulated 446 784 person-years during an average of 12-6 years of follow up. For internal comparisons, we excluded 2641 additional subjects with incomplete job data, leaving 32 802 subjects (405 973 person-years). Follow up for mortality was initiated at first exposure to styrene (1945–91), or on the first date for which complete payrolls were available, whichever was later. A styrene exposure database was constructed from personal, environmental, and biological measurements. An exposure matrix was developed by country and calendar period. It used job titles, types of product, and methods of production. Estimates of individual exposure were reconstructed by applying the matrix to personal occupational histories. Exposures decreased in all countries from around 200 ppm in the early 1960s to 20-40 ppm in the early 1980s.

For external comparisons, standardised mortality ratios (SMR) and 95% confidence intervals (95%CI) were calculated with the program PERSON-YEARS.3 The WHO mortality data bank provided national mortalities by sex, age, and calendar period.

Poison regression models were used for the internal comparisons among exposed subjects. Relative risks (RR) and 95% CIs were estimated with the program GLIM.4 We examined mortality from all non-malignant respiratory diseases (ICD-9 460–519), and from two subcategories (pneumonia ICD-9 480–486; and bronchitis, emphysema, and asthma ICD-9 490–493), in relation to variables of exposure to styrene. Country, sex, age (five levels,) and calendar period (four levels) were included in all models. Time since first exposure, duration of exposure, cumulative (ppm-years) and average exposure (ppm) were analysed as categorical variables as in the analysis on cancer risk.4

Results
All cause mortality among exposed workers was lower than expected from national rates (2196 observed deaths, SMR 96 (95%CI
Mortality from respiratory diseases and exposure to styrene (internal comparisons (Poisson regression); all relative risks (RR) and adjusted for country, age, calendar year, sex)

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Deaths</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time since first exposure (y)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 10</td>
<td>23</td>
<td>1.00*</td>
</tr>
<tr>
<td>10-19</td>
<td>58</td>
<td>2.06 (1.20-3.54)</td>
</tr>
<tr>
<td>> 20</td>
<td>31</td>
<td>2.98 (1.28-6.89)</td>
</tr>
<tr>
<td>P for trend = 0.01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Discussion

Mortality from non-malignant respiratory diseases increased significantly with increasing time since first exposure, although no association was found with other indicators of exposure to styrene. This pattern is likely to be due, at least in part, to the gradual diminution of the healthy worker effect.

Average exposure to styrene was significantly associated with mortality from pneumonia, though no overall excess was found when using national mortalities for comparisons. Pneumonia has been associated in humans with exposure to solvents, such as petrol, but we do not know of other findings linking long term exposure to a solvent with pneumonia. The causal pathway associating styrene exposure with pneumonia is not well understood. Infection is a necessary cause for the occurrence of pneumonia. Continuous exposure to irritants of the respiratory tract may damage the architecture of the lung parenchyma, allowing the action of infectious agents. Extrinsic substances may be accumulated in the lungs by infiltration. These may induce multiple pathogenic entities, such as diffuse infiltrative diseases, and produce structural damage and alterations in pulmonary function, so facilitating the induction of pneumonia. Of all the 25 deaths from pneumonia, 22 occurred during the end of work in the glass reinforced plastics industry. For these subjects, a significant increasing trend for average exposure was found (P for trend = 0.03). This suggests that subjects exposed to high average exposures may have higher risks of dying from pneumonia even long after the end of exposure. The association between average styrene exposure and pneumonia may be a chance finding but may also suggest that high exposures damage the lung parenchyma and increase the long term risk of pneumonia. Even in recent years, when average exposures have been considerably lowered, peak exposures of 200–300 ppm are regularly encountered in the lamination processes.

*Reference category.
Exposure to styrene and mortality from non-malignant respiratory diseases

Exposures present in the reinforced plastic industry should be considered. There is some evidence that it is unlikely that other agents are responsible for the increased risk of respiratory diseases. The most important agents to which exposure occurs in the reinforced plastic industry, apart from styrene, are mineral fibres, in particular glass wool, and resin dust. Although mineral fibres are released, mainly in the handling of mats, their diameter is too large to make them respirable. Exposure to resin dust occurs, mainly in the finishing of the product: workers with the highest exposure to resin dust may therefore not be those with the highest exposure to styrene; however, in small workshops workers may perform different tasks. Exposure to other respiratory irritants, such as asbestos, is not documented in this industry.

In conclusion, mortality from pneumonia was associated with intensity of exposure to styrene. The excess risk occurred in one of the target systems for the acute effects of styrene. This finding may be due to chance, however, and will have to be verified in further studies.

We thank Dr Joan Soriano (IMIM) for commenting on an earlier draft. This study was partly supported by the European Commission, BIOMED-1 programme (contract No BMH1-CT92-1110). EW was supported by a Special Training Award from the International Agency for Research on Cancer. MK was partly supported by a fellowship from the Ministry of Education and Science, Spain (DGICT, SAB95-0189).

Exposure to styrene and mortality from nonmalignant respiratory diseases.

doi: 10.1136/oem.53.7.499