Exposure of iron foundry workers to polycyclic aromatic hydrocarbons: benzo(a)pyrene-albumin adducts and 1-hydroxypyrene as biomarkers for exposure

Ø Omland, D Sherson, Å M Hansen, T Sigsgaard, H Autrup, E Overgaard

Abstract

Exposure to polycyclic aromatic hydrocarbons (PAHs) in foundry workers has been evaluated by determination of benzo(a)pyrene-serum albumin adducts and urinary 1-hydroxypyrene. Benzo(a)pyrene binding to albumin and 1-hydroxypyrene were quantitatively measured by enzyme linked immunosorbent assay (ELISA) and reverse phase high performance liquid chromatography (HPLC), respectively. 70 male foundry workers and 68 matched controls were investigated. High and low exposure groups were defined from breathing zone hygienic samples, consisting of 16 PAH compounds in particulate and gaseous phase. Mean total PAH was 10-40 μg/m³ in the breathing zone, and mean dust adsorbed PAH was 0.15 μg/m³. All carcinogenic PAH was adsorbed to dust. Median benzo(a)pyrene-albumin adduct concentrations (10-90% percentiles) were similar in foundry workers (smokers 0.55 (0.27-1.00) and non-smokers 0.58 (0.17-1.15) pmol/mg albumin and age matched controls (smokers 0.57 (0.16-1.45) and non-smokers 0.70 (0.19-1.55) pmol/mg albumin). Median 1-hydroxypyrene concentrations were significantly higher (P < 0.0001) in smoking and non-smoking foundry workers (0.022 (0.006-0.075) and 0.027 (0.006-0.164) μmol/mol creatinine than in smoking and non-smoking controls (0 (0-0.022) and 0 (0-0.001) μmol/mol creatinine). Dose-response relations between total PAH, pyrene, carcinogenic PAHs, and 1-hydroxypyrene for smokers, and polycyclic aromatic hydrocarbons adsorbed to dust for non-smokers are suggested. Exposure to PAHs adsorbed to dust showed an additive effect. There was no correlation between the concentrations of 1-hydroxypyrene and benzo(a)pyrene-albumin adducts. The change in 1-hydroxypyrene over a weekend was also studied. Friday morning median 1-hydroxypyrene concentrations were significantly higher in both smokers and non-smokers (0.021 (0-0.075) and 0.027 (0.006-0.164) μmol/mol creatinine than Monday morning median concentrations (0.007 (0-0.021) and 0.008 (0-0.021) μmol/mol creatinine). Smoking did not affect the concentrations of 1-hydroxypyrene or benzo(a)pyrene-albumin adducts. These data suggest that 1-hydroxypyrene is a sensitive biomarker for low dose PAH exposure. Exposure to PAHs may be aetiological related to increased risk of lung cancer in foundry workers.

Increased risk of lung cancer has been shown to occur in several studies of iron foundry workers. Polycyclic aromatic hydrocarbons (PAHs) may be an aetiological factor. Exposure to carcinogenic chemicals (for example PAHs) can be evaluated by measuring covalent binding with macromolecular targets, DNA, and proteins. As target tissue is not usually available several surrogate materials have been studied—namely, white blood cells, lymphocytes, and serum proteins. 1-10 1-Hydroxypyrene, a urinary metabolite of pyrene, has recently been used as to monitor PAH exposure in humans. 12-15

In iron foundries PAHs are present in both the gaseous phase and adsorbed on to dust. Benzo(a)pyrene adsorbed to particles in the lungs may augment carcinogenicity due to increased long term retention. These findings suggest that inhaled PAHs adsorbed to particles covalently interact with macromolecules to a greater extent than gaseous PAHs.

The purpose of this study was to: (a) quantify the concentrations of serum benzo(a)pyrene-albumin adducts and urinary 1-hydroxypyrene in healthy iron foundry workers, (b) investigate possible positive correlations between these biomarkers and PAH exposure variables (total PAHs, particulate PAHs, carcinogenic PAHs, and pyrene), (c) determine whether positive correlations exist between the two biomarkers, and (d) compare Friday and Monday morning 1-hydroxypyrene concentrations.

Subjects and methods

STUDY POPULATION AND CONTROL GROUP

The study population consisted of 70 male iron foundry workers. They were employed in melting, machine moulding, casting, or sand preparation. All were occupationally exposed to PAHs. The foundry was located in a small Danish town. The control group consisted of 68 male blue collar workers from a drinking water supply plant near Copenhagen, all
occupationally unexposed to PAHs. These groups were matched for age and smoking habits (table 1). Information about employment, smoking, alcohol consumption, respiratory and urogenital symptoms, and medications including the use of coal tar salves were obtained from questionnaires and checked by personal interviews. Tobacco, cigars, and cheroots smoked were translated to cigarettes when calculating pack-years. The research protocol was accepted by the local ethics committee.

Table 1 Comparison of control and exposed groups

<table>
<thead>
<tr>
<th></th>
<th>Control group (exposure supply workers)</th>
<th>Exposed group (foundry workers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smokers</td>
<td>(n = 42)</td>
<td>(n = 45)</td>
</tr>
<tr>
<td>Age (y)</td>
<td>43</td>
<td>40</td>
</tr>
<tr>
<td>Age range (y)</td>
<td>24-66</td>
<td>24-63</td>
</tr>
<tr>
<td>Pack-years</td>
<td>18 (11)</td>
<td>16 (13)</td>
</tr>
<tr>
<td>Urinary creatinine</td>
<td>11.3 (4.3)</td>
<td>17.8 (6.9)</td>
</tr>
<tr>
<td>(mmol/l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-smokers</td>
<td>(n = 26)</td>
<td>(n = 25)</td>
</tr>
<tr>
<td>Age (y)</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>Age range (y)</td>
<td>26-64</td>
<td>24-60</td>
</tr>
<tr>
<td>Urinary creatinine</td>
<td>13.1 (6.2)</td>
<td>19.6 (6.8)</td>
</tr>
<tr>
<td>(mmol/l)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All workers were men. Values are mean (SD) unless stated otherwise.

The total PAH concentration was calculated as the sum of the particulate and gaseous concentrations. Total particulate concentration was calculated as the sum of the compounds attached to the glass fibre filter. The total concentration of carcinogenic compounds was calculated as the sum of the concentrations of benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene.

BLOOD COLLECTION

Blood samples (10 ml) were collected from exposed subjects on a Friday morning in April 1989. The blood was allowed to coagulate overnight at 4°C. The coagulum was removed after centrifugation at 3000 rpm. The serum samples were frozen at -20°C until analysed.

ANALYSIS OF BENZO(a)PYRENE-ALBUMIN ADDUCTS IN BLOOD SAMPLES

The level of benzo(a)pyrene-albumin adducts was detected by competitive enzyme linked immunosorobent assay (ELISA) as previously described. Serum (2 ml) was isolated from the blood samples by centrifugation, and albumin was precipitated by addition of saturated ammonium sulphate (final concentration 50%). After removal of globulins by centrifugation, albumin was precipitated from the supernatant by acidification with acetic acid.

COMPETITIVE ELISA

Polystyrene 96 microwell plates (NUNC immunoplates, Nunc, Roskilde, Denmark) were coated with 7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene (BPDE) modified dextran. The competitive antigen was diluted 1:10 and 1:100 in phosphate buffered saline (PBS), and 100 μl/well (five wells for each dilution) was added, followed by the primary antibody 8E11 (kindly provided by Dr R Santella, Columbia University, NY, USA) diluted 1:250 000 in PBS (100 μl/well). A series of different concentrations of hydrolysed BPDE (0.1 fM to 1.0 pM) were included in each plate. The level of modification was estimated from the standard curve with the 1:100 dilution of the competitive antigen, and was expressed as pmol BPDE/mg albumin. The competitive assay has been described in detail elsewhere. Antibody 8E11, which detects BPDEs, released by acid hydrolysis of proteins, also recognises benzo(a)pyrene diols, triols, and tetrals and cross reacts with several other PAHs, with different affinities. Consequently results are expressed as benzo(a)pyrene equivalents that correspond to the amount of BPDE necessary to give the same level of inhibition.

URINE COLLECTION AND DETERMINATION OF 1-HYDROXY-PYRENE AND CREATININE

The urine samples from foundry workers were collected as the second urinary voids on Friday morning and the following Monday morning in April 1989, and frozen at -20°C until analysed. Urinary creatinine was measured to standardise the results.

The sample preparation and chromatography have been previously described in...
Exposure of iron foundry workers to PAHs biomarkers for exposure

Table 2 Mean (SD) concentrations of 16 gaseous and particulate PAHs

<table>
<thead>
<tr>
<th>PAH</th>
<th>Particulate PAHs (μg/m³)</th>
<th>Gaseous PAHs (μg/m³)</th>
<th>Total PAHs (μg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naphthalene</td>
<td>0 (0)</td>
<td>0.68 (3.85)</td>
<td>0.68 (3.85)</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>0 (0)</td>
<td>0.03 (0.17)</td>
<td>0.03 (0.17)</td>
</tr>
<tr>
<td>Fluorene</td>
<td>0.004 (0.01)</td>
<td>0.08 (0.05)</td>
<td>0.08 (0.05)</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>0.01 (0.04)</td>
<td>0.31 (0.16)</td>
<td>0.32 (0.17)</td>
</tr>
<tr>
<td>Anthracene</td>
<td>0.01 (0.02)</td>
<td>0.04 (0.03)</td>
<td>0.05 (0.03)</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>0.02 (0.07)</td>
<td>0.11 (0.15)</td>
<td>0.13 (0.20)</td>
</tr>
<tr>
<td>Pyrene</td>
<td>0.004 (0.01)</td>
<td>0.01 (0.02)</td>
<td>0.01 (0.02)</td>
</tr>
<tr>
<td>Benzo(a)anthracene*</td>
<td>0.01 (0.02)</td>
<td>0.01 (0.02)</td>
<td>0.01 (0.02)</td>
</tr>
<tr>
<td>Chrysene</td>
<td>0.02 (0.03)</td>
<td>0.02 (0.03)</td>
<td>0.02 (0.03)</td>
</tr>
<tr>
<td>Benzo(b)anthracene*</td>
<td>0.003 (0.01)</td>
<td>0.00 (0.00)</td>
<td>0.00 (0.00)</td>
</tr>
<tr>
<td>Benzo(k)fluoranthene*</td>
<td>0.02 (0.04)</td>
<td>0.02 (0.04)</td>
<td>0.02 (0.04)</td>
</tr>
<tr>
<td>Benzo(a)pyrene*</td>
<td>0.02 (0.04)</td>
<td>0.02 (0.04)</td>
<td>0.02 (0.04)</td>
</tr>
<tr>
<td>Dibenzo(a,h)anthracene</td>
<td>0.00 (0.00)</td>
<td>0.00 (0.00)</td>
<td>0.00 (0.00)</td>
</tr>
<tr>
<td>Benzo(g,h,i)pyrene</td>
<td>0.05 (0.08)</td>
<td>0.05 (0.08)</td>
<td>0.05 (0.08)</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene</td>
<td>0.0 (0.0)</td>
<td>0.0 (0.0)</td>
<td>0.0 (0.0)</td>
</tr>
<tr>
<td>Total 16 PAHs</td>
<td>0.15 (0.21)</td>
<td>1.24 (4.03)</td>
<td>1.39 (4.04)</td>
</tr>
</tbody>
</table>

*Carcinogenic PAHs. Seventeen measurements were taken.
foundry workers in both low and high total PAH exposure groups had significantly higher concentrations than smoking controls. The median values for the three groups were 0·020
(0·0·062), 0·022 (0·012·0·180), and 0
(0·0·022) μmol/mol creatinine respectively. Non-smoking foundry workers also had significantly higher 1-hydroxypyrene concentrations than non-smoking controls. High exposure foundry workers had slightly lower 1-hydroxypyrene concentrations than low exposure workers. The median values were 0·026 (0·008·0·083), 0·036 (0·066·0·174), and 0 (0·0·018) μmol/mol creatinine respectively.

Figure 4 shows the median 1-hydroxypyrene concentrations and exposure to particulate PAH for smokers and non-smokers. Non-smoking foundry workers with low or high exposures to dust adsorbed PAH had significantly higher concentrations of 1-hydroxypyrene than non-smoking controls. The median values for the three groups were 0·026 (0·004·0·164), 0·036 (0·006·0·062), and 0
(0·0·010) μmol/mol creatinine respectively. Both low and high exposure foundry workers who smoked had significantly higher concentrations of 1-hydroxypyrene than smoking controls. High exposure workers had slightly lower 1-hydroxypyrene concentrations than low exposure workers. The median values were 0·020 (0·0·057), 0·023 (0·001·0·178), and 0 (0·0·022) μmol/mol creatinine.

The median 1-hydroxypyrene concentrations according to exposure to carcinogenic PAHs and pyrene showed the same relation as for total PAHs. Both smoking and non-smoking foundry workers had significantly higher concentrations of 1-hydroxypyrene than their control counterparts (P low < 0·0001, P high < 0·0001). For both exposure variables smokers showed dose-response relations whereas non-smokers did not.

Figure 5 shows Friday and Monday morning median 1-hydroxypyrene concentrations.

Concentrations of 1-hydroxypyrene on Friday morning were significantly higher for both smokers and non-smokers than on Monday morning. The median Friday values were 0·021 (0·0·075) and 0·027 (0·006·0·164) μmol/mol creatinine and Monday values were 0·007 (0·0·021) and 0·008 (0·0·021) μmol/mol creatinine.

Discussion
The mean total PAH exposure in this foundry, 10·40 μg/m³, is higher than the mean exposure recently described in another Danish foundry, but lower than the mean exposure in German foundries (17·54 μg/m³). Similar exposure levels (8·32 μg/m³) have been found in rooers.

The mean concentration in our study of both benzo(a)pyrene (0·01 μg/m³) and pyrene (0·01 μg/m³) was lower than previously described in another Danish foundry (0·04 and 0·28 μg/m³) and considerably lower than the mean concentration found in the German study (0·47 and 1·47 μg/m³). The range of concentrations in 10 Canadian foundries for benzo(a)pyrene (0·004–8·15 μg/m³) and pyrene (up to 12·93 μg/m³) reflects a much higher exposure. Recent Finnish studies have described a high exposure group with benzo(a)pyrene five times greater than ours (≥0·04 μg/m³), thus indicating a substantially higher exposure in Finnish foundries.

The mean PAH adsorbed on dust was 1·44% of the measured total PAH concentration. This ratio is considerably lower than in German foundries, where the PAH adsorbed on dust was 23–20% of the total PAH concentration.

The reasons for these differences are uncertain, but may reflect different sampling methods, different binding materials, heterogenous hygienic conditions, and seasonal differences in air sampling.

As reported by others we found that all carcinogenic PAHs were adsorbed on dust. This might be important considering the prolonged retention of particulate PAHs found in animal studies.

In our study, the level of albumin adducts was similar in the exposed and the control
groups. Significantly raised protein adduct concentrations were found in Danish foundry workers. Two Finnish studies found higher concentrations of adducts in occupationally exposed foundry workers than in controls, but the increases were only slight in one study. In these three studies the exposure to airborne benzo(a)pyrene was considerably higher than in our foundry and may explain why our present study did not find differences.

1-Hydroxypyrene in urine has been used as a biomarker in studying occupational exposure to PAHs in paving workers, coke oven workers, and foundry workers. The results of these studies indicate that 1-hydroxypyrene might be used not only as a marker for exposure to pyrene, but also to assess general PAH exposure. Dutch studies of coke oven workers found a more than 10-fold increased concentration of 1-hydroxypyrene in exposed workers, and a twofold increase in benzo(a)pyrene-DNA adduct. The present study confirms that 1-hydroxypyrene is a sensitive biomarker for exposure to PAHs.

There was no indication of a smoking effect on 1-hydroxypyrene concentrations in this study although an effect has been reported elsewhere. Others have shown similar 1-hydroxypyrene concentrations for smokers and non-smokers. A recent study concluded that smoking increased the excretion of 1-hydroxypyrene, but it was not a strong determinant.

Our data showed that foundry workers with high exposure to PAHs had similar or only slightly greater 1-hydroxypyrene concentrations than foundry workers with low exposure. This suggests a limited exposure difference between the two exposure groups. It was interesting to note that the exposure variable PAH adsorbed to dust suggested a dose-response trend for non-smokers. This might be interpreted as an additional effect from simultaneous exposure to PAH and dust. Similar interpretations have been made from results with a combined PAH and silica exposure index.

The concentration of benzo(a)pyrene-albumin adducts in blood and urinary 1-hydroxypyrene in foundry workers did not show any correlation. Possible high air pollutant PAH exposure in our control group might veil a real difference in PAH exposure between occupationally exposed and occupationally unexposed workers, but this argument does not explain why the two biomarkers fail to mirror each other in the data. The lack of correlation could be due to differences in exposure profiles in the two groups. Unsystematic misclassification tends to reduce the risk estimate to unity, but as long as the exposure variables were identical for the two biomarkers, this possible design error does not present any real explanation. Differences between individuals in uptake, metabolism, and excretion might explain the lack of correlation between the two biomarkers. Another explanation could be that the PAH concentrations found in these foundries is below the threshold for increased benzo(a)pyrene-adduct formation.

The half life of 1-hydroxypyrene ranges from six to 35 hours. The Friday morning values for both smokers and non-smokers were significantly higher than the corresponding Monday values for the same workers. These results correspond with a study of coke oven workers in whom the end shift values after three days of exposure were higher than the preshift value.

Several potential confounders have been taken into consideration. Only men were studied. Age and duration of employment were not correlated with concentrations of the biomarkers. There was no correlation between smoking and the concentration of the biomarkers. None of the exposed workers or the controls had been treated with coal tar and no one had psoriasis. The study design did not control for potentially important confounding factors like exposure to airborne PAHs from the controls’ working environment and from general outdoor pollution. There was no reason to believe, however, that blue collar workers from the drinking water supply plant should be occupationally exposed to PAH. Values for PAHs in the order of ng/l have been measured in drinking water, so there is a theoretical possibility of a minimal exposure to PAHs from water. The benzo(a)pyrene exposure level at the present foundry is four to five times greater than the highest concentration of benzo(a)pyrene detected in Copenhagen (0-009 μg/m³).

There are no data measuring the PAH content in outdoor air from the town where the foundry is situated. The community is busy and heavily industrialised. It is therefore likely that the range of outdoor air pollution is similar to that of Copenhagen. Possible differences in PAH content from drinking water and food as well as liver function might have influenced the results to some degree, but this is likely to have been marginal.

We appreciate the financial support provided by the Danish Health Service Fund.

Exposure of iron foundry workers to polycyclic aromatic hydrocarbons: benzo(a)pyrene-albumin adducts and 1-hydroxypyrene as biomarkers for exposure.

O Omland, D Sherson, A M Hansen, T Sigsgaard, H Autrup and E Overgaard

Occup Environ Med 1994 51: 513-518
doi: 10.1136/oem.51.8.513

Updated information and services can be found at:
http://oem.bmj.com/content/51/8/513

Email alerting service

These include:

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/