Biological monitoring of workers exposed to cobalt metal, salt, oxides, and hard metal dust

D Lison, J-P Buchet, B Swennen, J Molders, R Lauwerys

Abstract

Objective—The aim was to examine the relation between environmental and biological (blood and urine) indices of exposure to different chemical forms of cobalt. Methods—A cross sectional study was undertaken in workers exposed to cobalt metal, oxides, and salts in a refinery and to a mixture of cobalt and tungsten carbide in a hard metal producing plant. Results and conclusion—Although biological monitoring of workers exposed to cobalt oxides showed higher blood and urine concentrations than in non-exposed subjects, these indices poorly reflected the recent exposure level. By contrast, when exposure was to soluble cobalt compounds (metal, salts, and hard metals), the measurement of urine or blood cobalt at the end of the workweek could be recommended for the assessment of recent exposure. An eight hour exposure to 20 or 50 µg/m³ of a soluble form of cobalt would lead to an average concentration in a postshift urine sample collected at the end of the workweek of 18.2 or 32.4 µg of cobalt/g creatinine, respectively.

Material and methods

STUDY POPULATIONS

One hundred and twenty two male workers from a cobalt refinery and 10 workers from a cemented tungsten carbide factory were included in this study. The cobalt plant uses a wide variety of raw materials, which are first dissolved in acid. The cobalt solution is then subjected to varying hydrometallurgical purification steps and cobalt salts, oxides, and metal powders are obtained as final products. Several steps involve the manipulation of powdered materials that generate dust. Only workers whose job activities were the same throughout the study week were included in the protocol. The workers were subdivided into three groups according to their main workplace or activity. Thirty five workers were exposed to cobalt metal, 72 to cobalt salts, and 15 to cobalt oxides.

In the cemented tungsten carbide factory the work involves either the grinding of cobalt and tungsten carbide powders after the addition of paraffin, the pressing and presintering of small blocks of the mixture, and shaping and sintering at 1500°C in the absence of oxygen. The material is eventually blasted, brazed, and grounded under wet or dry conditions to obtain the finished hard metal tools.

Each worker was examined at the beginning (Monday) and at the end (Friday) of a workweek.

AIR SAMPLING AND ANALYSIS

For assessment of total exposure to airborne cobalt each worker was equipped with a personal dust sampler on Monday and Friday. In the refinery plant, a CIP10 dust sampler (MSA, Saint-Ouen-L’Aumône, France) equipped with a 45 and a 60 grade polyurethane foam filter was used. Air was sampled for six hours. In the hard metal plant an SKC portable pump (Dorset, UK) equipped with an open filter holder and a 0.8 µm cellulose ester filter was used. Air was sampled for six to seven hours.

The cobalt content of the filter was determined by flameless atomic absorption
spectrometry (Perkin Elmer, Zeeman 5000) after dissolution in a 10% sulphuric acid and 1% nitric acid solution. We have verified that both sampling systems are equivalent for low and high cobalt particle concentrations.

URINE AND BLOOD ANALYSES

In both groups a spot urine sample was collected at the end of the shift both on Monday and on Friday. Blood samples were only available from the cobalt refinery workers (postshift on both Monday and Friday). Blood and urinary cobalt concentrations were determined by flameless atomic absorption spectrometry. The proficiency in determining cobalt in urine was checked by the addition in each measurement series of three certified urine standards (Behring, Marburg, Germany). The accuracy and the precision of the method for urine (n = 10 determinations) were 76.8% and 14.9%; 91.5% and 6.8% and 92.4% and 7.9% at target values of 5.25, 30.7, and 158.1 μg of cobalt/l, respectively. The accuracy and precision of the method for blood (n = 10 determinations) were 97% and 3.5%, and 95% and 1.0%, at target values of 10 and 20 μg of cobalt/100 ml, respectively. Urinary creatinine concentration was measured according to the Jaffé picrate method with the use of a Technicon RA1000 automate (Tarrytown, NY, USA).

STATISTICAL METHODS

Statistical analyses were by SAS procedures (SAS Institute). When variables were not normally distributed, the analysis was performed on log transformed data or on the rank of the values. Comparisons of the means between the groups were performed by analysis of variance followed by a Dunnett multiple comparison test. A simple linear regression model was used for characterisation of the relation between environmental and biological measurements. A p value < 0.05 was considered as the level of statistical significance.

Results

Table 1 summarises the characteristics and exposure conditions of the different groups. No significant difference in the smoking habits was noticed between the groups. The mean age and exposure duration were not significantly different except in hard metal workers who were older and exposed for a longer time than the other groups. The salt and hard metal groups were significantly less exposed to cobalt than the metal and oxide groups. As mentioned, blood samples were not available from hard metal workers. The average blood and urine values in the different groups were notably higher than in non-exposed subjects in whom they were usually below 2 μg/g creatinine for urine and 0.2 μg/dl for blood. A notable discrepancy was found between the cobalt metal and oxide groups. Although airborne cobalt concentrations were similar in the oxide and in the metal groups, the average cobalt concentrations in urine and in blood were lower in the oxide than in the metal.

Table 1 Characteristics, exposure conditions, and biological indices in the four groups of cobalt workers

<table>
<thead>
<tr>
<th>Metal (n = 35)</th>
<th>Salts (n = 72)</th>
<th>Oxides (n = 15)</th>
<th>Hard metals (n = 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposure (y)*</td>
<td>32 (21–54)ab</td>
<td>28 (19–55)a</td>
<td>31 (21–55)a</td>
</tr>
<tr>
<td>Pack-years‡</td>
<td>5.9 (0.48–32.4)a</td>
<td>4.6 (0.31–33.3)a</td>
<td>7.1 (2.9–22.1)a</td>
</tr>
<tr>
<td>Monday Co-air</td>
<td>433 (13–6819)a</td>
<td>62 (0–67700)b</td>
<td>117 (2.6–65.8)a</td>
</tr>
<tr>
<td>Monday Co-U</td>
<td>174.7 (15.7–2244)0a</td>
<td>32.2 (0–1000)bc</td>
<td>61.6 (21.3–691.2)ac</td>
</tr>
<tr>
<td>Monday Co-B</td>
<td>2.3 (0–2–16.0)a</td>
<td>0.8 (0–2–12.0)b</td>
<td>1.8 (0–4–7.7)a</td>
</tr>
<tr>
<td>Friday Co-air</td>
<td>383 (17–1076)7a</td>
<td>89 (1–4960)b</td>
<td>467 (23–772)7a</td>
</tr>
<tr>
<td>Friday Co-U</td>
<td>161.6 (13.1–1534)0a</td>
<td>45.6 (1–666)1b</td>
<td>70.0 (13–2035.7)ab</td>
</tr>
<tr>
<td>Friday Co-B</td>
<td>2.8 (0–2–19.0)a</td>
<td>0.9 (0–2–10.0)b</td>
<td>1.9 (0–7–7)6a</td>
</tr>
</tbody>
</table>

Groups with the same letter(s) are not statistically different (p > 0.05). * Median (range); ‡ geometric mean (range). Co-U = postshift cobalt in urine; Co-B = postshift cobalt in blood; Co-Air = time weighted average airborne cobalt concentration; ND = not determined.

Table 2 Relations between cobalt concentrations in workplace air, urine, and blood

<table>
<thead>
<tr>
<th>Log Co-air</th>
<th>Metal (n = 35)</th>
<th>Salts (n = 72)</th>
<th>Oxides (n = 15)</th>
<th>Hard metals (n = 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>b</td>
<td>p Value</td>
<td>r</td>
</tr>
<tr>
<td>log(Co-U)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monday endshift</td>
<td>0.79</td>
<td>0.59</td>
<td>0.01</td>
<td>0.69</td>
</tr>
<tr>
<td>ME—MM</td>
<td>0.72</td>
<td>0.69</td>
<td>0.01</td>
<td>0.67</td>
</tr>
<tr>
<td>Friday endshift</td>
<td>0.57</td>
<td>0.76</td>
<td>0.01</td>
<td>0.76</td>
</tr>
<tr>
<td>FE—FM</td>
<td>0.63</td>
<td>0.55</td>
<td>0.01</td>
<td>0.70</td>
</tr>
<tr>
<td>log(Co-B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monday endshift</td>
<td>0.69</td>
<td>0.48</td>
<td>0.01</td>
<td>0.67</td>
</tr>
<tr>
<td>ME—MM</td>
<td>0.77</td>
<td>0.55</td>
<td>0.01</td>
<td>0.62</td>
</tr>
<tr>
<td>Friday endshift</td>
<td>0.73</td>
<td>0.52</td>
<td>0.01</td>
<td>0.62</td>
</tr>
<tr>
<td>FE—FM</td>
<td>0.55</td>
<td>0.37</td>
<td>0.05</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Co-air = TWA airborne cobalt concentration (μg/m³); Co-U = cobalt in urine (μg/g creatinine); Co-B = cobalt in blood (μg/dl); ME—MM = difference (postshift—preshift) on Monday; FE—FM = difference (postshift—preshift) on Friday; r = Pearson correlation coefficient; b = regression coefficient.
metal group, both on Monday and Friday although the differences were not statistically significant.

The relations between cobalt concentration in the breathing zone (inhalable dust) and the concentration of cobalt in postshift urine and blood were examined on an individual basis. Table 2 presents the regression (b) and correlation (r) coefficients of these relations with their respective p values (log scales). Good correlations were found for salt, metal, and hard metal workers. The correlations were not improved when only the increase in cobalt concentration over the shift period was taken into account (ME-MM and FE-FM, table 2).

No major differences between the subclasses were found whatever blood or urine was considered. By contrast no significant correlation was found among the oxide workers, either for urine or for blood. When using a variable possibly related to cumulative exposure (product of Monday cobalt in air \times duration of exposure in years) rather than recent exposure, the relation with urine and blood values were also non-significant in the oxide group (r = 0.22, p = 0.43 and r = 0.30, p = 0.29, respectively).

Because the regression coefficients in the salt, metal, and hard metal groups were not significantly different, the results collected for those workers were pooled (figure). The relation between individual values of air and post-shift urine cobalt concentrations measured on Friday was expressed by the equation:

\[
\log \text{cobalt in urine (\(\mu g/\text{g creatinine}\))} = 0.44 \pm 0.63 \log \text{cobalt in air (\(\mu g/m^3\))}
\]

As shown in the figure, the workers exposed to cobalt oxides did not show any significant relation between end of shift cobalt in urine and in air. Similar results were obtained with Monday samples (results not shown).

**Discussion**

In subjects occupationally exposed to cobalt the urinary excretion and the blood or serum concentration of the metal have been proposed as biological indicators of recent exposure. So far, however, most biological monitoring studies have been carried out with hard metal workers. In a study of 10 groups of such workers (range of cobalt in air 28–367 \(\mu g/m^3\)), Ichikawa et al.\(^1\) found a good correlation between cobalt concentration in blood and cobalt in air on the basis of the mean values found in the different groups. For similar groups of workers, Pellet et al.\(^9\) have suggested that the difference between end and beginning of shift urinary cobalt concentration reflected the daily exposure (range of cobalt in air 120–284 \(\mu g/m^3\)), the concentration in the Friday evening urine was indicative of the cumulative exposure during the week and the concentration of cobalt in urine collected on Monday morning mainly reflected long term exposure. In another group of hard metal workers exposed to airborne concentrations below 100 \(\mu g/m^3\) there was an increase of urinary cobalt concentration as the workweek proceeded.\(^3\) In a study of diamond polishers using cobalt containing discs the measurement of urinary cobalt concentration, when considered on a workshop basis, reflected the amount of exposure (below 50 \(\mu g/m^3\)).\(^9\)

No comparative data are available for other forms of cobalt to which workers may be exposed. The absorption rates of such forms are, however, likely to be dependent on their solubility in biological media, which may also be influenced by the concomitant presence of other substances such as carbides.\(^1\)\(^12\)

The importance of the chemical nature of the exposure has been pointed out by Christensen and Mikkelsen.\(^13\) These authors found increased concentrations of cobalt in blood (0.2–24 \(\mu g/l\)) and urine (0.4–848 \(\mu g/l\)) from pottery plate painters who used a soluble cobalt paint, whereas only slightly increased values were measured in those who used insoluble cobalt paint (0.05–0.6 \(\mu g/l\) in blood and 0.05–7.7 \(\mu g/l\) in urine).

Our results confirm that urine and blood cobalt concentrations reflect recent exposure to cobalt metal, salt, and hard metal powders (soluble forms). This does not seem to apply, however, for exposure to cobalt oxide. Although concentrations of cobalt in blood and urine were higher than in non-exposed subjects, no relation between biological and environmental indices could be evidenced in the group of workers exposed to oxides. This cannot be simply explained by a difference in the size distribution of the airborne powders as the alveolar fraction was around 10% in the
four groups. Therefore, we suggest that although significant absorption of cobalt may occur through dissolution of the oxide in alveolar macrophage lysosomes,14 its pulmonary absorption in humans might be lower than with soluble compounds. In hamsters intratracheally dosed with cobalt oxide, 60% of the dose was recovered in the gastrointestinal tract after 24 hours. The amount of cobalt recovered in the digestive tract was supposed to have been cleared from the lung because gastrointestinal secretion of cobalt is very low. In rats the pulmonary absorption of inhaled cobalt oxide is even less.1 Early experimental work by Delahant and Schepers also showed that cobalt oxide was less toxic to the lung than the metal form; these authors suggested that differences in solubilities might account for these different reactivities.15 16 The present finding of increased cobalt in blood and urine in oxide workers, unrelated to recent exposure, may therefore result from a delayed pulmonary absorption of the metal deposited in the lungs.

It has been shown in animal experiments that the pulmonary absorption of cobalt is greatly increased in the presence of tungsten carbide.17 In the present study, we found no evidence for this. One should however remain cautious in the interpretation of these results as exposure concentrations were notably low in the hard metal group and perhaps at higher ambient concentrations the absorption may be modified—for example, by the presence of inflammatory processes.

In conclusion, depending on the chemical form to which the workers were exposed, clear differences were found in the relations between air and urine or blood cobalt concentrations. Although biological monitoring of workers exposed to cobalt oxides showed greater blood and urine concentrations than in non-exposed subjects, these indices only poorly reflected the recent exposure level. By contrast, when exposure was to soluble cobalt compounds, the measurement of urinary or blood cobalt at the end of the workweek could be recommended for the monitoring of workers. An eight hour exposure to 20 or 50 µg/m³ of a soluble form of cobalt would lead to an average concentration (in a postshift urine sample collected at the end of the workweek) of 18·2 or 32·4 µg of cobalt/g creatinine, respectively.

Biological monitoring of workers exposed to cobalt metal, salt, oxides, and hard metal dust.

D Lison, J P Buchet, B Swennen, J Molders and R Lauwerys

*Occup Environ Med* 1994 51: 447-450
doi: 10.1136/oem.51.7.447

Updated information and services can be found at:
http://oem.bmj.com/content/51/7/447

**Email alerting service**

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

**Notes**

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/