Occupational asthma in salbutamol process workers

Abstract
Occupational asthma after exposure to salbutamol in the pharmaceutical industry has not been previously reported. The occurrence of occupational asthma is described in two pharmaceutical process workers who were likely to have inhaled doses appreciably in excess of the therapeutic dose range. The findings do not lead to an unequivocal conclusion on the mechanism of the asthma but it was probably a pharmacological consequence of high exposure.

(Occup Environ Med 1994;51:397–399)

Occupational asthma has been described after the inhalation of a number of drugs or their precursors including glycylnpropion, an intermediate in the production of salbutamol, but not to salbutamol itself. We report two pharmaceutical production workers with occupational asthma caused by inhaled salbutamol and describe the circumstances of their exposure. Salbutamol has been used extensively worldwide in the treatment of bronchial asthma because of its effective bronchodilator properties. Salbutamol base is used in metered dose aerosols whereas salbutamol sulphate is used in other preparations.

Description of process and exposure
The process commenced with pure salbutamol base delivered to the site as a raw material and therefore did not include the primary synthesis previously described. Part of the salbutamol base was re-packed for distribution by scooping from large drums into smaller bags in a corner of an area measuring about 150 m² where other agents were also handled. The rest of the salbutamol base was sent to a separate finishing suite on the same site for conversion to the sulphate. Here, salbutamol base in batches of 35 kg was tipped into a reaction vessel and dissolved in dilute sulphuric acid. Crystalline salbutamol sulphate was precipitated by the addition of industrial methylated spirit. The salbutamol sulphate was filtered, the material hand scooped on to trays, and oven dried and tipped into a mechanical hopper for milling down to a size of 2 to 5 µm. The standard personal protection worn while handling the material was an airhood extending down to the waist and supplied by breathing air.

Limited exposure data were available. In 1979, one personal sampler on an operator in the finishing suite was reported as showing an airborne concentration of 0-5 mg m⁻³, whereas three other environmental monitor-samplers showed values ranging from 0-05 mg m⁻³ in the background of the finishing suite to an indeterminate value that exceeded 0-2 mg m⁻³ inside the milling cubicle. Two further airborne background environmental samples in 1982 taken in the finishing suite at a time of day when no work was in progress showed values of 0-015 mg m⁻³ of airborne “active” salbutamol dust. In 1981, 18 swab test samples were taken over areas of about 40 cm² in the finishing suite and showed values ranging from nil to in excess of 6 (median 0-1) mg salbutamol.

Case descriptions
CASE 1
At presentation in 1980 a 41 year old man had worked for the firm for six years as a process worker in the manufacture of a large number of drugs including salbutamol. He reported that on the days that salbutamol base was sulphated he and the other 10 workers experienced tremors. He gave a two year history of shortness of breath and wheeze that started about two hours after leaving work on the days he worked with salbutamol. He smoked less than 10 cigarettes a day. Skin prick tests to common antigens, salbutamol base (10 mg/ml), and salbutamol sulphate (10 mg/ml) were negative. Self recorded two hourly peak expiratory flow rate (PEF) recordings at work and at home for three weeks showed a small early rise in maximum PEF followed by a reduction during the one week he worked with salbutamol; there was not a full recovery during the next week. Figure 1 shows a comparison of the pooled

![Figure 1](http://oem.bmj.com/)

Figure 1 Pooled diurnal PEF patterns (mean (SEM)) for case 1 comparing salbutamol exposed days (n = 5) with other days (n = 15) as controls.
diurnal pattern during work in the salbutamol finishing suite contrasted with control exposure. Days exposed to salbutamol had significantly higher (two sample t tests) PEF readings at 0900 and 1100 (both p < 0.05) and 1500 and 1700 (both p < 0.01) whereas they showed lower readings at 2300 (p < 0.01). Single blind bronchial inhalation testing with 100 mg of powdered salbutamol base in 250 g dried lactose produced a 22% fall in forced expiratory volume in one second (FEV1) after three hours (fig 2). There was no asthmatic reaction after a control challenge with 250 g of dried lactose powder or up to 1 g of milled salbutamol sulphate. Salbutamol (base, 400

μg) given by metered dose inhaler produced an immediate 26% rise in FEV1, with no late fall. He was relocated to avoid contact with salbutamol and remained well for at least five years, left the firm, and was lost to follow up.

CASE 2
A 49 year old man worked for the same firm for six years packing several drugs including salbutamol base, usually for two to four weeks a year. He developed rhinitis after two years in this job, with improvement at weekends and on holiday. In November 1983 he developed a cough, chest tightness, and shortness of breath during the second day of packing a batch of salbutamol base. He was given a course of prednisolone and improved. Self recorded two hourly PEF readings for four weeks showed definite work related asthma (fig 3). He did not wish to undergo bronchial inhalation testing. The salbutamol packaging was moved to another site. He has remained asymptomatic in employment with the firm, and repeat PEF recordings were normal.

Discussion
The description of the handling of large quantities of fine dry material, as well as the air sampling and surface swab data, is consistent with a high personal exposure to airborne salbutamol. Despite the personal protection that was described as being worn, the reporting of tremors in the process workers, a well recognised pharmacological effect of uptake of high doses of salbutamol also suggests high exposure. This could have been the result of an inadequacy in the protective clothing, contamination during its removal, or compliance limited to the operations perceived to be at a higher risk.

Both workers had symptoms consistent with occupational asthma and one had symptoms of occupational rhinitis associated with exposure to salbutamol base. The pattern of PEF recordings in both workers, the late asthmatic reaction after bronchial inhalation testing with salbutamol base, the asymptomatic latent period of exposure, the absence of previous asthma, and recovery after avoidance of exposure, all suggest that salbutamol base was the primary cause of the asthma. The diurnal pattern of PEF showed a bronchodilator effect during the exposed working days consistent with the pharmacological effect of salbutamol. The subsequent drop in PEF might have been consistent with an allergic effect partly masked by a pharmacological effect.

The absence of a response to skin prick testing or to salbutamol base given by metered dose inhaler favours a pharmacological mechanism manifested at high doses, rather than an allergy, as the explanation for the workers’ symptoms. Connolly et al had found a reduction in airway sensitivity in both normal and asthmatic subjects after a four week course of inhaled salbutamol, whereas Holgate et al had shown a similar airway effect in normal subjects. In these and similar studies the biologically available dose was limited for ethical reasons and was likely to have been substantially smaller than in the two workers reported here. It is plausible that the exposures experienced here were sufficiently high to cause not only tolerance to the pharmacological effects of salbutamol but also a tachyphylactic effect to a degree manifest by airway hyperreactivity or rebound bronchoconstriction. Indeed there is evidence that sustained
high exposures to salbutamol in normal9 as well as sensitised10 guinea pigs induce height-
ened airway reactivity to a range of spasmo-
gens. It is most unlikely, however, that the
high exposures reported here are relevant to
the therapeutic use of salbutamol.

It is of interest that in case 1 100 mg of
salbutamol (base) provoked a late asthmatic
reaction whereas 1 g of salbutamol sulphate
did not, as this suggests a qualitative differ-
ence between the two resulting from a prop-
erty other than adrenoceptor occupancy.11

This report further highlights the caution
that the therapeutic effects or the side effects
of pharmaceuticals as given clinically are inade-
quate predictors of adverse occupational
effects, especially on the organs of first con-
tact.12 Control of exposure at source by enclo-
sure and local exhaust ventilation is essential
with additional personal protection as
required. Regular personal monitoring of air-
borne pharmacologically active dust and
appropriate health surveillance of pharmaceuti-
ical process workers should be pursued.

We thank Dr R Elton for his help with the statistical analysis.

1 Fawcett IW, Pepys J, Erooga MA. Asthma due to “glycyl
compound” powder—an intermediate in production of
2 Reynolds JEF, ed. Martindale. The extra pharmacopoeia,
3 Burge FS, O’Brien IM, Harries MG. Peak flow rate
records in the diagnosis of occupational asthma due to
colophony. Thorax 1979;34:308-16.
4 Newman Taylor AJ, Davies R. Inhalation challenge test-
lung disease: research approaches and methods. New York:
5 Connolly ME, Tashkin DP, Hui KK, Littner MB, Wolfe
RN. Selective subsensitization of beta-adrenergic recep-
tors in central airways of asthmatics and normal subjects
during long-term therapy with inhaled salbutamol. J
6 Holgate ST, Stubbs WA, Wood PJ, McCaughhey ES,
Alberti KG, Tattersfield AE. Airway and metabolic
resistance to intravenous salbutamol: a study in normal
7 Harvey JE, Tattersfield AE. Airway response to salbuta-
mol. Effect of regular salbutamol inhalations in normal,
8 Van Schayck CP, Graafland SJ, Visch MB, Dompeling E,
Van Weel C, Van Herwaarden CLA. Increasing
bronchial hyperresponsiveness after inhaling salbutamol
during one year is not caused by subsensitization to
9 Galland BC, Blackman JG. Enhancement of airway reac-
tivity to histamine by isoprenaline and related \(\beta \)-adreno-
ceptor agonists in the guinea-pig. Br J Pharmacol 1993;
108:1016-23.
10 Hoshiko K, Morley J. Exacerbation of asthma hyper-
reactivity by \(\beta \) 2 salbutamol in sensitised guinea pigs.
Jpn J Pharmacol 1993;60:159-63.
11 Chapman ID, Buchheit KH, Manley P, Morley J. Active
enantiomers may cause adverse effects in asthma. Trends
12 Agius RM. Occupational exposure limits for therapeutic
Occupational asthma in salbutamol process workers.

R M Agius, A G Davison, E R Hawkins and A J Newman Taylor

Occup Environ Med 1994 51: 397-399
doi: 10.1136/oem.51.6.397

Updated information and services can be found at: http://oem.bmj.com/content/51/6/397

Email alerting service

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/