Occupational asthma in salbutamol process workers

Abstract

Occupational asthma after exposure to salbutamol in the pharmaceutical industry has not been previously reported. The occurrence of occupational asthma is described in two pharmaceutical process workers who were likely to have inhaled doses appreciably in excess of the therapeutic dose range. The findings do not lead to an unequivocal conclusion on the mechanism of the asthma but it was probably a pharmacological consequence of high exposure.

(Occup Environ Med 1994;51:397–399)

Occupational asthma has been described after the inhalation of a number of drugs or their precursors including glycyrol compound, an intermediate in the production of salbutamol, but not to salbutamol itself. We report two pharmaceutical production workers with occupational asthma caused by inhaled salbutamol and describe the circumstances of their exposure. Salbutamol has been used extensively worldwide in the treatment of bronchial asthma because of its effective bronchodilator properties. Salbutamol base is used in metered dose aerosols whereas salbutamol sulphate is used in other preparations.

Description of process and exposure

The process commenced with pure salbutamol base delivered to the site as a raw material and therefore did not include the primary synthesis previously described. Part of the salbutamol base was repackaged for distribution by scooping from large drums into smaller bags in a corner of an area measuring about 150 m² where other agents were also handled. The rest of the salbutamol base was sent to a separate finishing suite on the same site for conversion to the sulphate. Here, salbutamol base in batches of 35 kg was tipped into a reaction vessel and dissolved in dilute sulphuric acid. Crystalline salbutamol sulphate was precipitated by the addition of industrial methylated spirit. The salbutamol sulphate was filtered, the material hand scooped onto trays, and oven dried and tipped into a mechanical hopper for milling down to a size of 2 to 5 μm. The standard personal protection worn while handling the material was an airhood extending down to the waist and supplied by breathing air.

Limited exposure data were available. In 1979, one personal sampler on an operator in the finishing suite was reported as showing an airborne concentration of 0·5 mg m⁻³, whereas three other environmental monitor-
diurnal pattern during work in the salbutamol finishing suite contrasted with control exposure. Days exposed to salbutamol had significantly higher (two sample t tests) PEF readings at 0900 and 1100 (both p < 0.05) and 1500 and 1700 (both p < 0.01) whereas they showed lower readings at 2300 (p < 0.01). Single blind bronchial inhalation testing\(^1\) with 100 mg of powdered salbutamol base in 250 g dried lactose produced a 22% fall in forced expiratory volume in one second (FEV\(_1\)) after three hours (fig 2). There was no asthmatic reaction after a control challenge with 250 g of dried lactose powder or up to 1 g of milled salbutamol sulphate. Salbutamol (base, 400 \(\mu\)g) given by metered dose inhaler produced an immediate 26% rise in FEV\(_1\), with no late fall. He was relocated to avoid contact with salbutamol and remained well for at least five years, left the firm, and was lost to follow up.

CASE 2
A 49 year old man worked for the same firm for six years packing several drugs including salbutamol base, usually for two to four weeks a year. He developed rhinitis after two years in this job, with improvement at weekends and on holiday. In November 1983 he developed a cough, chest tightness, and shortness of breath during the second day of packing a batch of salbutamol base. He was given a course of prednisolone and improved. Self recorded two hourly PEF readings for four weeks showed definite work related asthma (fig 3). He did not wish to undergo bronchial inhalation testing. The salbutamol packaging was moved to another site. He has remained asymptomatic in employment with the firm, and repeat PEF recordings were normal.

Discussion
The description of the handling of large quantities of fine dry material, as well as the air sampling and surface swab data, is consistent with a high personal exposure to airborne salbutamol. Despite the personal protection that was described as being worn, the reporting of tremors in the process workers, a well recognised pharmacological effect of uptake of high doses of salbutamol\(^2\) also suggests high exposure. This could have been the result of an inadequacy in the protective clothing, contamination during its removal, or compliance limited to the operations perceived to be at a higher risk.

Both workers had symptoms consistent with occupational asthma and one had symptoms of occupational rhinitis associated with exposure to salbutamol base. The pattern of PEF recordings in both workers, the late asthmatic reaction after bronchial inhalation testing with salbutamol base, the asymptomatic latent period of exposure, the absence of previous asthma, and recovery after avoidance of exposure, all suggest that salbutamol base was the primary cause of the asthma. The diurnal pattern of PEF showed a bronchodilator effect during the exposed working days consistent with the pharmacological effect of salbutamol. The subsequent drop in PEF might have been consistent with an allergic effect partly masked by a pharmacological effect.

The absence of a response to skin prick testing or to salbutamol base given by metered dose inhaler favours a pharmacological mechanism manifested at high doses, rather than an allergy, as the explanation for the workers' symptoms. Connolly et al\(^6\) had found a reduction in airway sensitivity in both normal and asthmatic subjects after a four week course of inhaled salbutamol, whereas Holgate et al\(^6\) had shown a similar airway effect in normal subjects. In these and similar studies\(^6\) the biologically available dose was limited for ethical reasons and was likely to have been substantially smaller than in the two workers reported here. It is plausible that the exposures experienced here were sufficiently high to cause not only tolerance to the pharmacological effects of salbutamol but also a tachyphylactic effect to a degree manifest by airway hyperreactivity\(^6\) or rebound bronchoconstriction. Indeed there is evidence that sustained
high exposures to salbutamol in normal as well as sensitised guinea pigs induce heightened airway reactivity to a range of spasmogens. It is most unlikely, however, that the high exposures reported here are relevant to the therapeutic use of salbutamol.

It is of interest that in case 1 100 mg of salbutamol (base) provoked a late asthmatic reaction whereas 1 g of salbutamol sulphate did not, as this suggests a qualitative difference between the two resulting from a property other than adrenoceptor occupancy.

This report further highlights the caution that the therapeutic effects or the side effects of pharmaceuticals as given clinically are inadequate predictors of adverse occupational effects, especially on the organs of first contact. Control of exposure at source by enclosure and local exhaust ventilation is essential with additional personal protection as required. Regular personal monitoring of airborne pharmacologically active dust and appropriate health surveillance of pharmaceutical process workers should be pursued.

We thank Dr R Elton for his help with the statistical analysis.

Occupational asthma in salbutamol process workers.

R M Agius, A G Davison, E R Hawkins and A J Newman Taylor

Occup Environ Med 1994 51: 397-399
doi: 10.1136/oem.51.6.397

Updated information and services can be found at:
http://oem.bmj.com/content/51/6/397

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/