be avoided if our aim is to create a good work environment. The exact meaning of words such as "adverse", "toxic", "disease", or "illness" is important but the process of defining them must not obstruct the improvement of the work environment.

Coal mining, emphysema, and compensation revisited

Editor,—Journalists should always check their facts. The same principle presumably applies to higher forms of life. Morgan (1993;50:1051-2) criticises the Industrial Injuries Advisory Council (IIAC) for its decision to recommend the prescription of chronic bronchitis and emphysema for coal miners. He notes, presumably sardonically, that it was "perhaps coincidental" that the IIAC report was sent to the Secretary of State in November 1992, shortly after the announcement of large scale impending pit closures.

In fact it is plain from the face of the IIAC report1 that it was sent to the Secretary of State in August 1992—that is, two months before the Government's announcement of pit closures. The report was not officially published until November. Delays of several months between submission and publication are quite usual and so a conspiracy theory (or at least one that implicates IIAC) seems entirely unwarranted. The present writer is not without criticisms of the role of the IIAC2 but it does help to get one's facts right.

N J WIKLELEY

University of Birmingham
Faculty of Law
Edgbaston
Birmingham
B15 2TT

The correction of urinary mercury concentrations in untimed, random urines samples.

Editor,—We note with interest the continuing number of reports defining dose-effect relations for occupational exposure to mercury (Hg) that have used urinary Hg concentrations in untimed, random samples (spot urines) either as a cumulative exposure dose or a simple dose index. These studies use often spot urine Hg concentrations readily available from routine biological monitoring strategies in the chloralkali and other Hg utilising industries. Diurnal variation in the metal's excretion has been noted,1 but the higher concentrations found in morning samples compared with afternoon and evening samples have been suggested as being of no practical relevance for biological monitoring schemes.4 Urinary Hg concentrations are said to reflect integrated exposure over the preceding weeks or months in workers with long term exposure. There has been debate about whether correction forms of correction for urinary concentration are better in reducing intra individual variation of urinary Hg and thus making a single spot measurement more closely reflect true Hg exposure.5 We present some of the time on the effect of suggested methods for the correction of spot urine Hg samples in reducing within day and between day intra individual variation.

Within day variation was studied in 17 workers with long term exposure to Hg vapour at a single factory. All spot urine samples were taken during a single day at the approximate times of of work, 1000, 1300, 1600, and 2000 hours. Mercury was measured by an automated method; creatinine, specific gravity (SG), and osmolality were also measured. The total analytical imprecision (CVt) for urinary Hg corrected for either creatinine or SG or osmolality was between 5% and 6%. All Hg measurements were either uncorrected (nmol/l) or corrected per mM creatinine, to SG 1016, and to 500 mosmol. The between day variation was studied in 10 workers with relatively constant, long term exposure to Hg vapour at a single factory. Spot urine samples were taken from each subject in the same time on of day on each day of the working week (five days). The samples from this study were uncorrected or corrected for creatinine concentration or for an SG of 1-016.

The mean urinary Hg concentrations in the workers from the within day and between day studies were 58 (4-268) and 32 (6-50) nmol/mmol creatinine respectively. The table shows the calculated mean and standard deviation (SD) of the intra-individual coefficients of variation (CVt) for urinary Hg results in the two studies and, and by comparison, of ANOVA, of the mean CVs of corrected urinary Hg results with uncorrected results. The data from the within day study confirmed the previously reported diurnal variation.4 A low mean and SD of intra-individual CVs derived from multiple spot urinary Hg samples would imply that a single urine sample closely reflects the true Hg excretion in that individual subject. Creatinine correction of Hg concentration significantly reduced mean intra-individual variation, both between and within day, to about 50% of the variation in uncorrected urine results.6 Although the mean intra-individual CVt, both within and between day, was less with creatinine correction than with SG correction, the difference did not reach significance (ANOVA, Bonferroni multiple comparison test). There was some evidence from F tests, however, that creatinine correction may be more reproducible between subjects than SG correction. It should be noted that, even with creatinine correction, the mean CVt of around 15% with the imprecision of our method implies that two consecutive daily spot urine samples, taken at a time to reduce the impact of intra individual variation, could statistically be around 45%–50% apart (t=0.2/2CVt). It has been widely accepted in clinical pathology that acceptable analytical imprecision should be less or equal to half the average intra-individual biological variation (CVt).7 This value for urinary Hg corrected for creatinine can be derived from the formula CVt = CVp + CVt.8 Thus we suggest that the combined analytical precision of true urinary Hg and creatinine method should be less than 7.3%.

Correction for creatinine and, perhaps slightly less satisfactorily, correction for SG reduce the uncertainty of spot urinary Hg concentration in reflecting accurately the true Hg excretion in an individual subject. Corrected spot urinary Hg results have proved their use both in routine biological monitoring and in studies describing dose-effect relations that may aid in setting standards. It is important, however, that the limitations and errors associated with their use as dose measures are understood.

H J MASON

Occupational Medicine and Hygiene Laboratory,
HSE, Sheffield
IM CALDER

HSE, Luton

The correction of urinary mercury concentrations in untimed, random samples.

H J Mason and I M Calder

Occup Environ Med 1994 51: 287
doi: 10.1136/oem.51.4.287-a

Updated information and services can be found at:
http://oem.bmj.com/content/51/4/287.2.citation

Email alerting service

These include:

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/