CORRESPONDENCE

SAS program for testing the difference between two correlated correlation coefficients

Sir,-Sometimes we need to statistically compare two product-moment correlation coefficients (r) that are correlated—that is, not statistically independent. We might, for example, wish to determine whether the correlation of urinary cadmium (X1) on β, microglobulin (Y) is statistically different from the correlation of blood cadmium (X1) on β, microglobulin (Y) in the same group of subjects. In a methodological study to validate two methods, say machine (X1) vs ascultatory (X2), against a reliable invasive method (Y), for measuring blood pressure, we might compare the correlation of X1 on Y with the correlation of X2 on Y.

These correlation coefficients are correlated because they share the common variable Y measured from the same group of subjects, and any test of significance that ignores this non-independence will be inappropriate. Actually the problem has long been recognised and the test for comparing correlated correlation coefficients was first described by Hotelling in 1940.1 However, his test has been used for many years and is still being used, even though the method has serious drawbacks.2 Improvements to the Hotelling test have been considered by several authors.3

Here I describe an SAS program4 to compare two correlated correlation coefficients. The program uses the statistical procedure given by Meng et al.4 and it outputs the Z value (standard normal deviate) and the two sided significance probability pertaining to the statistical difference of the two correlated correlation coefficients. To enhance user friendliness, the program is packaged as an SAS macro named %MACRO CCORR (appendix). The macro requires four user supplied parameters: r1x y (correlation of X1 on Y), r2x y (correlation of X2 on Y), r1x2 (correlation of X1 on X2), and n (number of subjects in the sample). It then stored the macro with filename and extension as "ccorr.mac" in C:/MYSAS, then the entire SAS program will consist of as few as two statements, one to invoke the macro and the other to supply the four parameters to the macro. Here is an example of a complete SAS program:

%INCLUDE 'C:/MYSAS/CCORR.MAC';
%CCORR (0.72, 0.55, 0.22, 50)
%CCORR (0.25, 0.14, 0.18, 60)

The first test gives Z = 1.4282 with the two sided probability value = 0.15319; the second test gives Z = 2.0385 with the two sided probability value = 0.02097.

Appendix: listing of the SAS codes

%MACRO CCORR(r1x y, r2x y, r1x2, n);
%* stored as 'CCORR.MAC';
%OPTIONS nocenter nodate;
DATA null;
zi = 0.5*log((1 + r1x y)/(1 - r1x y));
z2 = 0.5*log((1 + r2x y)/(1 - r2x y));
r12 = (r1x y*r1x2 + r2x y*r2x2)/2;
if i > 1 then f = 1;
h = (n*(1 - f) - (1 - f)*n) + 1;
diff = zi - z2;
"%*Note: output is shown on the 'LOG WINDOW';
run;
%MEND CCORR;

JAMES LEE
Division of Biostatistics and Health Informatics,
Department of Community, Occupational Health,
and Family Medicine,
National University of Singapore,
NHU Lower Bukit Timah Road,
Singapore 0511

Reproductive risks associated with diving

Sir,-Raymond (1993;30:1055-6) considers the risks to reproduction from convective heat transfer among divers who use hyperbaric chambers. It is worth noting that they may be presumed to be at risk not only from the heat, but also from the pressure. Röckert et al.1 reported that the plasma testosterone concentrations of rats exposed to a hyperbaric environment of air were significantly and substantially (about 50%) reduced. Röckert and Hagglöf2 reported that prolonged exposure of the descending part of plasma testosterone in human divers showed it to decrease after diving.

I have hypothesised that the sex ratio (proportion of males) of mammalian (including human) offspring is affected by the hormone concentrations of both parents at the time of conception; high concentrations of testosterone being associated with subsequent births of boys and high concentrations of oestrogens with subsequent births of girls.3 This suggestion is supported by the findings of Lyster and Röckert4 who reported highly significant low sex ratios in the offspring of Australian abalone divers and Swedish navy divers. It is also supported by the finding of a significantly low ratio in the offspring of men who were exposed to the nematocide DBPC4: such men have been reported to have high gonadotrophin but normal testosterone concentrations.5

Workers in industrial medicine might consider using the sex ratios of offspring as a criterion of reproductive risk. Unusual sex ratios of offspring are characteristic of a number of diseases—for example, prostatic cancer,6 hepatitis B,7 multiple sclerosis,8 testicular atrophy,9 and non-Hodgkin's lymphoma.10

Meanwhile it might be prudent to re-examine the testicular function and sex ratios of offspring of further samples of divers.

W H JAMES
Galton Laboratories,
Department of Genetics and Biometry,
University College, London,
Wolseley House,
Sway House, Weymouth St,
London NW1

1 Röckert HOE, Damber J-E, Janson PO. Testicular blood flow and plasma testosterone concentrations in anesthetized rats previously exposed to 6 ATA. Undersea Biomedical Research 1978;5:355-61.
2 Röckert HOE, Hagglöf R. Reversible changes in the rate of DNA synthesis in the testes of rats after daily exposure to a hyperbaric environment of air. IRCS Journal of Medical Science 1983;11:531.
5 Röckert HOE. Changes in the vascular bed of testes of rats exposed to air at 6 atmospheres absolute pressure. IRCS Journal of Medical Science 1977;5:107.

Occupational exposure to dust and lung disease among sheet metal workers

Sir,—The study Occupational exposure to dust and lung disease among sheet metal workers by Hunting and Welch (1993;50: 432-42) was an ambitious undertaking. This correspondence considers the modelling and selection techniques employed, the validity of the work history and exposure modelling, the potential impact of possible selection bias, and the appropriateness of the industrial hygiene evaluation on the fibreglass insulation findings.

In terms of the modelling and variable selection techniques, the final analyses of exposure to chronic bronchitis and the not age adjusted even though the confounding effects of age are ubiquitous and universally recognised in epidemiological research. Age should have been included in the regression equation "regardless of statistically significant if such inclusion changes the estimated coefficients of the risk variables by any appreciable degree."7 Without such an adjustment, the statistical significance of the association between chronic bronchitis and high level fibreglass exposure (ripout) may

Downloaded from http://oem.bmj.com/ on April 9, 2017 - Published by group.bmj.com
Reproductive risks associated with diving.

W H James

Occup Environ Med 1994 51: 141
doi: 10.1136/oem.51.2.141-a

Updated information and services can be found at:
http://oem.bmj.com/content/51/2/141.2.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/