Haemolysis of human erythrocytes by pentachlorophenol and its suppression by albumin

Hideki Igisu

Pentachlorophenol (PCP), a potent and inexpensive biocide, has been used widely, especially for wood preservation. Because of its extensive use, there is concern about the possible health hazards caused by PCP. Cases of severe PCP intoxication have been described, some fatal. At least one case of haemolytic anaemia associated with PCP intoxication has been found but little is known about the effects of PCP on erythrocytes.

Methods

Pentachlorophenol and γ-globulin (from human serum) were purchased from Sigma (St Louis, MO) and human serum albumin from Chemical Dynamic Corporation (South Plainfield, NJ). Blood was obtained from healthy males. The erythrocyte suspension (packed cell volume 4·5%) and the membranes were prepared as described.

The PCP was first dissolved in ethanol. The reaction mixture for the determination of haemolysis contained 0·68 ml isotonic buffer (30 mM Tris HCl, pH 7·4, with 120 mM NaCl, 5 mM KCl, and 2 mM MgCl₂) and 0·02 ml ethanol with or without PCP. The incubation and the calculation of haemolysis were as reported previously.

To examine binding of PCP, the concentrations in solutions were estimated spectrophotometrically. The membrane suspension (in 10 mM Tris HCl pH 7·4, 4 mg protein/ml, 0·25 ml) was mixed with 0·25 ml 0·1 M potassium phosphate buffer pH 7·4 and 0·01 ml ethanol with or without PCP. After incubation at 37°C for 30 minutes, the mixture was centrifuged at 15 000 g for 30 minutes. The supernatant was diluted five times with the phosphate buffer and the absorbance at 320 nm was measured (free PCP). The PCP solution (in ethanol) was diluted in the same way and the absorbance was measured (total PCP).

In the ultrafiltration study, the isotonic buffer (1·96 ml) containing albumin or γ-globulin was mixed with 0·04 ml ethanol containing 10 mM PCP, and transferred to Ultracent-10 (Toho, Tokyo). After centrifugation at 1000 g for 40 minutes, PCP in the filtrate was measured. All measurements on haemolysis and protein binding were done in duplicate, and each experiment was carried out at least twice.

Results

When PCP was added to the reaction mixture, haemolysis was seen (fig 1A). Presence of glucose (5 mM) did not affect haemolysis. On the other hand, haemolysis (by 0·8 mM PCP) was completely abolished by albumin (fig 1B). γ-Globulin, however, did not suppress the haemolysis. (γ-Globulin itself did not haemolysed the cells.)

The concentration of PCP in the supernatant after sedimentation of the erythrocyte membrane decreased as the amount of membrane increased. When the concentration of PCP was varied, a clear
A curved plot was obtained from Scatchard analysis, suggesting that the erythrocyte membrane has multiple binding sites for PCP with different affinities. Hence, it is possible that PCP attacks more than one component of the membrane.

Albumin could completely suppress the PCP induced haemolysis, whereas γ-globulin could not. The results of the ultrafiltration study indicated that albumin (but not γ-globulin) bound PCP. Weinbach et al\(^5\) reported that albumin could restore mitochondrial function impaired by PCP. Thus albumin can potently counteract the effects of PCP and this seems due to its capacity to bind PCP.

Because human serum contains more than 3% of albumin, it seems reasonable that haemolytic anaemia has only rarely been seen in PCP intoxication\(^1\) and that exchange blood transfusion showed a dramatic effect in patients severely intoxicated with PCP.\(^7\) It should be noted, however, that haemolytic anaemia might be induced if the equilibrium of PCP between albumin and erythrocytes should be altered.

I thank Professor M Ikeda for his help with statistical analyses.

Requests for reprints to: Hideki Iigisu, MD, Department of Environmental Toxicology, University of Occupational and Environmental Health, Kitakyushu 807, Japan.

Accepted 6 July 1992
Haemolysis of human erythrocytes by pentachlorophenol and its suppression by albumin.

H Igisu

doi: 10.1136/oem.50.4.378

Updated information and services can be found at:
http://oem.bmj.com/content/50/4/378.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/