As part of the 50th birthday celebration, we are arranging to reprint 12 papers, the editor’s choice, which have appeared in previous issues of the Journal. They have been chosen partly to illustrate the range and scope of the Journal over the years and partly because they are or were important in their day. More significantly, they have been chosen because they exemplify some of the best in scientific writing and can all be read with great pleasure and all who wish to communicate their observations, their ideas, or their enthusiasms would do well to study them and learn from them.

We will publish one paper each month through the year and they will appear in the order in which they were originally published.

Editor’s Choice

Chronic mercury poisoning

by Monamy Buckell, Donald Hunter, Reginald Milton, and Kenneth M A Perry

(British Journal of Industrial Medicine 1946;3:55–63)

It would hardly be possible to imagine a selection of papers from the Journal that did not contain at least one by Donald Hunter, the first editor. Hunter, who was never himself an occupational physician in the sense that he was never employed in industry, nevertheless had the most profound effect on occupational medicine. His pre-eminent place was due in large measure to his Diseases of Occupations, which appeared first in 1955 and went through six editions before his death. There can have been few, if any, textbooks of medicine that were such a pleasure to read and that were so full of good advice. Even now the section on the social history of occupational health is worth a read. If the later editions of the book started to show their age, this is perhaps the occupational hazard which besets the author of a big popular work. The new, multiauthored continuation of the book bears little resemblance to the original in style or readability and in my view would best be called something else. It is such a pity that there is no longer anyone with either the breadth of knowledge or the writing ability to produce another work in the same class.

The second way in which Hunter had such an influence was through his students, several of whom became—or remain—prominent in occupational medicine. Unfortunately I never knew Hunter but my first boss, A R Thompson, who was chief medical officer at Vauxhall Motors had been a student at the London Hospital and had a vivid recollection of Hunter’s lectures which were remembered by all present long after the event.

The paper reprinted here is a classic study of chronic mercury poisoning which, surprisingly, given its long history, had never been fully investigated in industry. The paper contains a splendid description of the toxic organic psychosis produced by mercury in which “the man affected is easily upset and embarrassed, loses all joy in life and lives in constant fear of losing his job. He has a sense of timidity and may lose self control before visitors . . . if one stops to watch such a man in a factory, he will sometimes throw down his tools and turn in anger on the intruder, saying he cannot work if watched . . . Drowsiness, depression loss of memory and insomnia may occur, but hallucinations, delusions and mania are rare.”

The description of the method for measuring urinary mercury concentrations in the paper is a good example of the elaborate techniques that were necessary in the days before atomic absorption spectrophotometry and the rest which now make capturing the stray molecule in any body fluid so (comparatively) easy.

Accepted 1 June 1992

Correspondence and editorials

The British Journal of Industrial Medicine welcomes correspondence relating to any of the material appearing in the journal. Results from preliminary or small scale studies may also be published in the correspondence column if this seems appropriate. Letters should be not more than 500 words in length and contain a minimum of references. Table and figures should be kept to an absolute minimum. Letters are accepted on the understanding that they may be subject to editorial revision and shortening.

The journal now also publishes editorials which are normally specially commissioned. The Editor welcomes suggestions regarding suitable topics; those wishing to submit an editorial, however, should do so after discussion with the Editor.
University of Newcastle upon Tyne, Newcastle upon
Tyne, NE2 4HH, UK.

1 International Agency for Research on Cancer. Occupational
exposures in petroleum refining: crude oil and major
petroleum fuels. IARC Monographs Eval Carcinog Risk Hum
1989;45:159–201.
2 Kearney CA, Dunham DB. Gasoline vapor exposures at a high
3 McDermott HJ, Vos GA. Service station attendants’ exposure to
benzene and gasoline vapors. Am Ind Hyg Assoc J 1979:40:
315–21.
4 Harman AW, Frewin DB, Priestly BG. Induction of microsomal
drug metabolism in man and in the rat by exposure to
5 Dossing M, Loft S, Sonne J, Schroeder E. Antipyrine and
metronidazole metabolism during occupational exposure to
6 Stock JK, Priestly BG. Urinary thiourea output as an index of
occupational chemical exposure in petroleum retailers. Br J
7 Chasseaud LF. The role of glutathione and glutathione-S-
transferases in the metabolism of chemical carcinogens and
other electrophilic agents. Advances in Cancer Research 1979;
29:175–274.
8 Parkinson GS. Benzene in motor gasoline—an investigation into
possible health hazards in and around filling stations and in
9 Sherwood RJ. Evaluation of exposure to benzene vapour during
10 Pandya KP, Rao GS, Dhasmana A, Zaidi SH. Occupational
exposure of petrol pump workers. Ann Occup Hyg 1975;18:
363–4.
11 Elster I, Bencsath FA, Drysch K, Hafele H. Benzene intoxica-
tion in service station attendants. Sicherheitingenieur
12 Andersson K, Nilsson C-A, Nygren O. A new method for the
analysis of tetramethyllead in blood. Scand J Work Environ
13 Hogstedt B, Gullberg B, Mark-Vendel E, Mitelman F,
Skerfving S. Micronuclei and chromosome aberrations in
bone marrow cells and lymphocytes of humans exposed
14 Mark-Vendel E, Hogstedt B, Skerfving S, Mitelman F. Location
of chromosome aberrations in bone marrow cells of individuals
15 Zhou X, Li L, Cui M, Yu R, Li L, Yan Z. Cytogenetic
monitoring of petrochemical workers. Mutat Res 1986;175:
237–42.
indicator of reproductive risk among petroleum refinery
17 van Doorn R, Leijdekkers Ch-M, Bos RP, Brouns RME,
Henderson PTh. Enhanced excretion of thioureas in urine of
operators from chemical waste incinerators. Br J Ind Med
18 Eillman GL. Tissue sulphydryl groups. Arch Biochem Biophys
1959;82:70–7.
19 Huang YC, Chiu WL. Creatinine XII: comparison of assays of
low serum creatinine levels using high performance liquid
chromatography and two picrot methods. J Pharmacol Sci
20 Muirhead MM, Somogyi AA, Rolan PE, Bochner F. Effect of
cimetidine on renal and hepatic drug elimination: studies with
21 Perry P, Wolff S. New giemsa method for the differential staining
22 Block AW. Sister chromatid exchange methodology. In:
Sandberg AA, ed. Sister chromatid exchange. New York: Alan
23 Carrano AV, Minkler JL, Stetka DG, Moore DH. Variation in
baseline sister chromatid exchange frequency in human
24 Marsh CA. Metabolism of d-glucuronolactone in mammalian
systems. Identification of d-glucuronic acid as a normal
25 March J, Turner WJ, Shanley J, Field J. Values for urinary
excretion of d-glucaric acid by normal individuals. Clin Chem
26 Latham AN. d-Glucaric acid as an index of hepatic enzyme
induction by anticonvulsant drugs in man. J Pharm Pharmacol
27 Motulsky H. Graphpad, plot, analyse data and digitise graphs. ISI
28 Sillett RW, Wilson MB, Malcolm RE, Ball KP. Deception
Principles and methods of toxicology. New York: Raven Press,
30 Lafuente A, Mallol J. Thioureas in urine during occupational
31 Edwards JW. Biological monitoring of occupational chemical
exposure. Adelaide: University of Adelaide, 1990. (PhD
thesis.)

Accepted 15 June 1992
seemed to be a progressive decrease in percentages of OKT3⁺ and OKT4⁺ cells and the OKT4⁺/OKT8⁺ ratio, and an increase in percentage of OKT8⁺ cells in those with radiographic abnormalities. Also, there were no significant differences between the various asbestos exposures.

As immunoregulatory disturbance usually results from changes in B and T cell numbers, especially in T cell subpopulations and the OKT4⁺/OKT8⁺ ratio, study of these changes may help to investigate the immunological pathogenesis of asbestosis. The analysis of T cell subsets as well as B and T cell numbers may have diagnostic and predictive value for the asbestos related diseases.

Vancouver style

All manuscripts submitted to the *Br J Ind Med* should conform to the uniform requirements for manuscripts submitted to biomedical journals (known as the Vancouver style).

The *Br J Ind Med*, together with many other international biomedical journals, has agreed to accept articles prepared in accordance with the Vancouver style. The style (described in full in *Br Med J*, 24 February 1979, p 532) is intended to standardise requirements for authors.

References should be numbered consecutively in the order in which they are first mentioned in the text by Arabic numerals above the line on each occasion the reference is cited (Manson confirmed other reports…). In future references to papers submitted to the *Br J Ind Med* should include: the names of all authors if there are six or less or, if there are more, the first three followed by *et al*; the title of journal articles or book chapters; the titles of journals abbreviated according to the style of *Index Medicus*; and the first and final page numbers of the article or chapter.

Examples of common forms of references are:

levels on Jackson and Jones's graph are interesting, although they are semiquantitative. The relation of the haemolytic anaemia with maleic anhydride was based on his known sensitisation to maleic anhydride and the temporal relation between exposure and disease. The graph does seem to show an increase in exposure to maleic anhydride at least before the second episode of haemolysis. It is true that the tests we performed looking for in vitro haemolysis in the presence of maleic anhydride were negative but the laboratory concerned had never done these tests before. Our original paper also noted that maleic anhydride was used chemically to modify erythrocyte membrane proteins to produce a foreign protein. This provides a mechanism by which maleic anhydride may cause haemolysis.

The findings of Jackson and Jones of positive antibodies in workers without symptoms is interesting. In the only study we are aware of with this type of result, the positive RAST cut off was obtained by calculating isotope binding three standard deviations above the mean of that in 20 samples of umbilical cord blood. This could be anywhere between 0.1% and 1.4%. By contrast, our worker's maleic anhydride RAST binding ranged from 10.5% to 15.6% which is of a completely different order and less likely just to reflect exposure.

One of the unusual features of the reported case is the persistence of IgE antibodies after occupational exposure ceased. The concentrations decreased, however, at the rate seen for other acid anhydrides and are consistent with removal from exposure with some re-exposure. We point out that environmental exposures do not only occur when the worker is at home, and it is likely that our worker went closer to the factory than 8 km on occasion after leaving work. Source of re-exposure other than factory emissions include contact with contaminated workmates outside the workplace induced by antigen on their hair and clothing, for example.

We were aware of disagreement with our patient's account of his symptoms but Jackson was kept informed throughout the preparation of the paper and our patient was shown Jackson's comments and allowed to modify his account before publications.

We understand Jackson and Jones' concerns that haemolytic anaemia is not incorrectly associated with maleic anhydride. If a clinician subsequently has to deal with an autoimmune haemolytic anaemia in a worker who is exposed to maleic anhydride, however, we believe that our report serves to point out that workplace exposure should be added to the list of possible aetiologies.

NOTICES

An international congress on occupational health will be held in Nice, France 26 September–1 October 1993.

This is a major event in the life of the International Commission and to a wider extent in the world of occupational health and the industrial environment.

For a brochure and registration form (reduced prices for replies received before 1 May 1993) contact: CO24 France, Les Miroirs Cedex 27, 92096 Paris La Defense. Telephone 33 (1) 47.62.33.70; Fax 33 (1) 47.62.31.53.

An intensive course in occupational epidemiology will be held in Wermelskirchen, Germany, 23–28 May 1993.

The intensive course in occupational epidemiology (ICOE) is a five day instructional course in the concepts, approaches, methods, analysis, and interpretation of occupational epidemiological research. It is specifically designed to provide occupational physicians and other interested health professionals with the essential background necessary for critically reading and interpreting published epidemiological research, designing basic epidemiological studies, and assembling and analysing data pertaining to the health of worker populations. Course topics will be the epidemiological perspective, history of occupational epidemiology, occupational study design options, basic analytical techniques, preven-

For further information please contact: Dr Kenneth A Mundt, ICOE Director or Walter Dieckmann, Dipl rer soc, ICOE Manager, Akademie für öffentliche Gesundheit, Overbergstrasse 17, D-4630 Bochum 1, Germany. Telephone (49)-(0)234-700-5162; Fax: (49)-(0)234-7094-325.