Biological monitoring of exposure to nerve agents

J Bajgar

Abstract
Changes in acetylcholinesterase activity in blood and some organs of rats after intoxication with sarin, soman, VX, and 2-dimethylaminoethyl-(dimethylamido)-phosphono-fluoridate (GV), in doses of roughly $2 \times LD_{50}$, given intramuscularly, were obtained from published data and by experiment. The time course of inhibition of acetylcholinesterase in blood, regions of brain, and diaphragm and the occurrence of signs and symptoms of poisoning (none, salivation, disturbed ventilation and fasciculations, convulsions, or death) were summarised and compared. When blood enzyme activities were 70–100% normal, no obvious signs were seen; at 60–70%, salivation occurred; at less than 30–55%, disturbed ventilation and fasciculations were seen, and at 15–30%, convulsions occurred. Less than 10% was fatal. In experiments with narcotised dogs, the blood acetylcholinesterase activity and the ability to reactivate it with trimedoxime were determined after intoxication by intramuscular administration of the four compounds. It is concluded that acetylcholinesterase activity in the blood corresponds to that in the target organs and can be considered as an appropriate parameter for biological monitoring of exposure to nerve gases. Moreover, determination of reactivation of blood acetylcholinesterase gives more information than simple determination of enzyme activity.

Nerve agents are compounds of high toxicity,¹ one of the many reasons for their possible use as chemical weapons.² Others from this class of chemicals

Figure 1 Schematic representation of possible complex effects of organophosphate (OP) action. AST, ALT, AcP, AIP, EST, γ-GT represent transaminases, phosphatases, esterases, and γ-glutamyltransferase (modified from Bajgar⁴).
EVALUATION OF PUBLISHED DATA

We used published data summarised in the paper by Baijar describing the inhibition of AChE in the blood and other organs of female rats after intra-

material and methods

Figure 3 Structural formulae of the agents used.
muscular administration of soman, sarin, and VX. The doses were roughly \(2 \times \text{LD}_{50}\)—namely, 0.36 mg/kg for sarin, 0.154 mg/kg for soman, and 0.030 mg/kg for VX.

INHIBITION OF AChE ACTIVITY IN VIVO

For compound GV, female Wistar rats (Velaz Praha, Czechoslovakia) weighing 200–220 g were used. The animals were divided into groups of six animals. After intoxication with GV in a dose roughly \(2 \times \text{LD}_{50}\) (0.034 mg/kg), AChE activity in the blood, regions of brain, and diaphragm proceeded quickly. Inhibition of AChE activity in vivo was described previously.25 The method is based on a duplicate determination of AChE activity with and without reactivator (trimeboxime chloride, Léčiva Praha, Czechoslovakia) at a concentration with negligible effect \((5 \times 10^{-3} \text{M})\) on the hydrolysis of substrate, acetylthiocholine (Lachema Brno, Czechoslovakia).23 These experiments were performed on beagle dogs (Velaz Praha, Czechoslovakia) of both sexes, weighing 8–12 kg, \((n = 3–5)\). The dogs were anaesthetised and intoxicated by intramuscular injection of soman \((0.007 \text{ mg/kg})\), sarin \((0.03 \text{ mg/kg})\), VX \((0.003 \text{ mg/kg})\), or GV \((0.004 \text{ mg/kg})\). Blood was collected at different time intervals and the percentage of AChE activity or its reactivation was determined. In this case, the symptoms registered were only salivation and fasciculation. Convulsions and death were not seen because of the low doses of the agents used and modification of the symptoms by narcotisation.

STATISTICAL EVALUATION AND CHEMICALS

Statistical evaluation was performed with relevant programmes using a Turbo 12 computer. 5,5-Dithiobis-2-nitrobenzoic acid (Serva Heidelberg, Germany) was used as chromogen for AChE activity determination. Other chemicals of analytical grade were obtained from Lachema Brno.

REACTIVATION OF AChE ACTIVITY IN VIVO

Reactivation of blood AChE activity in vivo was described previously.25 The method is based on a duplicate determination of AChE activity with and without reactivator (trimedoxime chloride, Léčiva Praha, Czechoslovakia) at a concentration with negligible effect \((5 \times 10^{-3} \text{M})\) on the hydrolysis of substrate, acetylthiocholine (Lachema Brno, Czechoslovakia).23 These experiments were performed on beagle dogs (Velaz Praha, Czechoslovakia) of both sexes, weighing 8–12 kg, \((n = 3–5)\). The dogs were anaesthetised and intoxicated by intramuscular injection of soman \((0.007 \text{ mg/kg})\), sarin \((0.03 \text{ mg/kg})\), VX \((0.003 \text{ mg/kg})\), or GV \((0.004 \text{ mg/kg})\). Blood was collected at different time intervals and the percentage of AChE activity or its reactivation was determined. In this case, the symptoms registered were only salivation and fasciculation. Convulsions and death were not seen because of the low doses of the agents used and modification of the symptoms by narcotisation.

STATISTICAL EVALUATION AND CHEMICALS

Statistical evaluation was performed with relevant programmes using a Turbo 12 computer. 5,5-Dithiobis-2-nitrobenzoic acid (Serva Heidelberg, Germany) was used as chromogen for AChE activity determination. Other chemicals of analytical grade were obtained from Lachema Brno.

Results

Figure 4 shows the changes in AChE activities in rat blood. The decrease in half lives for activity of AChE in the materials examined (table) showed that, after soman intoxication, inhibition of AChE in the pontomedullar area and diaphragm proceeded quickly.

<table>
<thead>
<tr>
<th>Table</th>
<th>Half lives of inhibition of AChE activity in vivo after soman, sarin, VX, or GV poisoning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent and dose (mg/kg)</td>
<td>Material</td>
</tr>
<tr>
<td>Soman: 0.154</td>
<td>Blood</td>
</tr>
<tr>
<td></td>
<td>Pontomedullar area</td>
</tr>
<tr>
<td></td>
<td>Basal ganglia</td>
</tr>
<tr>
<td></td>
<td>Diaphragm</td>
</tr>
<tr>
<td>Sarin: 0.360</td>
<td>Blood</td>
</tr>
<tr>
<td></td>
<td>Pontomedullar area</td>
</tr>
<tr>
<td></td>
<td>Basal ganglia</td>
</tr>
<tr>
<td></td>
<td>Diaphragm</td>
</tr>
<tr>
<td>VX: 0.030</td>
<td>Blood</td>
</tr>
<tr>
<td></td>
<td>Pontomedullar area</td>
</tr>
<tr>
<td></td>
<td>Basal ganglia</td>
</tr>
<tr>
<td></td>
<td>Diaphragm</td>
</tr>
<tr>
<td>GV: 0.034</td>
<td>Blood</td>
</tr>
<tr>
<td></td>
<td>Pontomedullar area</td>
</tr>
<tr>
<td></td>
<td>Basal ganglia</td>
</tr>
<tr>
<td></td>
<td>Diaphragm</td>
</tr>
</tbody>
</table>
Biological monitoring of exposure to nerve agents

Figure 5 The range of AChE activity in rat blood corresponding to different symptoms of poisoning (mean values and SD). The points represent the mean value of blood AChE activity in rats exposed to organophosphorus insecticides according to published data.24-26

\[\triangle = \text{Trichlorfon; } \circ = \text{demeton; } \bullet = \text{dichlorvos.} \]

and corresponded to that found in the blood. In sarin poisoning, the fastest rate and the greatest degree of AChE inhibition in the pontomedullar area, corresponding to that in the blood was seen. On the other hand, after VX or GV intoxication, the half lives of AChE inhibition were similar in the blood and diaphragm (table). If we summarise the results from different sources on rats, similar relations between enzyme inhibition and clinical state are obtained: near normal activity (70-100%) corresponds to intoxication without symptoms. Salivation is seen when the activity is decreased to 60-70%, fasciculations and dyspnoea are found if the AChE activity is below 55%. When convulsions occurred, AChE activity was 15-30% and in the case of death, a maximum of 10% normal AChE activity was detected. These results were confirmed not only in experiments with the nerve agents but also in cases of intoxication with organophosphate insecticides like trichlorfon,24 demeton,25 and dichlorvos,26 (fig 5).

After intoxication of the dogs with soman, a rapid decrease in blood AChE activity was recorded (fig 6). It reached a steady state 10 minutes after the injection of soman. The reactivation potential of blood AChE activity decreased with time and after 100 minutes AChE could not be reactivated at all (fig 6). A mean reactivation in the range of 0-16% was found.

In the case of sarin, a similar decrease in AChE activity was found (fig 6). On the other hand, reactiva-

tion 100 minutes after the injection of sarin was seen: the mean reactivation for AChE activity inhibited by soman was about 60% (fig 6).

Prolonged inhibition of AChE activity was seen after VX intoxication, the steady state being achieved 50-60 minutes after the injection (fig 7). On the other hand, practically 100% reactivation in vivo was obtained 120 minutes after the intoxication (fig 7).

The course of AChE inhibition after GV intoxication was similar to that after VX (fig 7): the steady state occurred 60 minutes after the injection. The reactivation pattern of inhibited AChE activity, however, was different: it was similar to that found for soman, with less than 10% reactivation 60 minutes after intoxication (fig 7).

Discussion

From the results presented, a relation exists between signs of poisoning and changes in AChE activity in the blood for highly toxic organophosphates. These changes are similar to those seen in the target organs. The sites of the toxic effect are different for the different compounds studied. In the case of G-compounds (sarin and soman), the activity of AChE in the brain is a better marker for poisoning than the enzyme activity in peripheral nervous tissues. Soman has a more uniform action than sarin. In the case of VX and GV, their effect on peripheral AChE activity was more pronounced and changes in AChE activity in the blood were similar to those in the diaphragm. This agrees with other results27 in which the inhibi-

Figure 6 Changes in AChE activity (bottom) and its reactivation (R) (top) in blood of dogs intoxicated with soman (○) and sarin (●). Results are means with SD.
tion of cholinesterase activity in plasma or red blood cells occurred early in the clinical profile and is an especially important indicator of moderate exposure.

The results dealing with inhibition of AChE activity in blood and reactivation in dogs enable an assessment of half life periods for aging. For soman, it is a matter of minutes; for sarin it is more than two hours. Aging of AChE after VX administration was not seen within 24 hours. By contrast, for GV a fast aging with a half life of 10 minutes was found. This is in agreement with published data for soman and sarin. It is known from another study that aging rates of AChE activity inhibited by soman in vitro and in vivo are similar: the half life of erythrocyte AChE activity in the rat was 8-6 minutes, which compares favourably with our results on dogs.

It can be concluded that AChE activity in the blood is an appropriate parameter for biological monitoring of exposure to nerve gas. It does not allow an assessment of the extent of intoxication, however, or the prognosis of the repeated administration of reactivators. The test used in our experiments improves the prediction of further prognosis and enables a more rational treatment. Moreover, these results give some pointers as to the likely agent used. Where there is little or no reactivation (up to 10–20%), the poisoning is probably caused by soman or GV: moderate reactivation (more than 50%), would tend to indicate sarin intoxication. An AChE activity reactivated to 80% or more suggests that the toxic agent might be VX. These findings have obvious importance for cases of intoxication with organophosphorus insecticides; in most cases aging of AChE activity did not occur. Thus in instances of decreased AChE activity for reasons other than inhibition by organophosphorus insecticides (carbamates, metabolic or genetic diminution of activity etc) no reactivation will be found. We can assume that these two methods could serve as basic tests in the diagnosis of organophosphate poisoning.

I am indebted to Dr G Cooper of the British disarmament delegation in Geneva for his comments and suggestions, and I also thank Mrs M Zechovská, E Vodáková and J Petrová for skilled technical assistance and Mrs H Roobová for preparation of the manuscript.

References

Biological monitoring of exposure to nerve agents

Accepted 18 November 1991
Biological monitoring of exposure to nerve agents.

J Bajgar

doi: 10.1136/oem.49.9.648

Updated information and services can be found at:
http://oem.bmj.com/content/49/9/648

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/