Respiratory symptoms and lung function in hemp workers

Eugenija Zuskin, Bozica Kanceljak, Duska Pokrajac, E N Schachter, T J Witek Jr

Abstract
Respiratory symptoms and abnormalities of lung function were studied in 84 female and 27 male hemp workers employed in two textile mills (A and B) processing soft hemp (C sativa). In mill A 46 women and 27 men were investigated and 38 female workers were studied in mill B. Forty nine women and 30 men from a non-dusty industry served as controls. A significantly higher prevalence of almost all chronic respiratory symptoms was found in female hemp workers when compared to control workers. Among the men these differences were significant for nasal catarrh and sinusitis. A high prevalence of byssinosis was found among female hemp workers in both mills (group A, 47.8%; group B, 57.9%) as well as in the male workers (66.7%). Statistically significant across shift reductions in lung function were found for all ventilatory capacity measurements in female and male hemp workers varying from 7.1% for forced expiratory volume in one second (FEV1) to 15.1% for flow rates at 50% vital capacity (FEF50). Measured Monday baseline values before the work shift were significantly lower than expected for hemp workers, being particularly reduced for FEF25 and FEF75. The data suggest that occupational exposure to hemp dust is a significant risk factor for the development of acute and chronic lung disease in workers employed in this textile industry.

In the early 18th century Ramazzini1 recognised that hemp workers suffer from asthmatic symptoms due to occupational exposure to dust. More recently an asthma-like disease among hemp workers was described under the name cannabis.23 Velvart et al4 reported hemp worker’s disease in 34 out of 55 hemp workers and found that the severity of the disease was related to dust exposure in the workplace.

Originally the term byssinosis was limited to the description of respiratory disease in cotton workers, but the term is now also used for the asthma-like syndrome which occurs with exposure to the processing of flax, hemp, and other natural vegetable fibres. Boujuy et al5 reported that respiratory disorders among hemp workers constitute a serious and disabling problem, particularly among those workers engaged in the batting and hackling of biologically retted soft hemp (C sativa). At about the same time Valic et al6 found a high prevalence of byssinotic symptoms in a group of hemp workers. These symptoms were reported by 20.0% to 62.5% of the studied workers and were frequently accompanied by across shift reductions in ventilatory capacity. Smith et al7 described a group of rope workers exposed to a mixed dust of hemp and flax in whom byssinotic symptoms were reported in 11.1% to 37.5% of workers. No significant difference in forced expiratory volume in one second (FEV1) was noted between those workers exposed to high and low concentrations of dust. Valic and Zuskin8 recorded across shift reductions in ventilatory capacity on Mondays in a group of female hemp workers. These airway responses were prevented by the inhalation of metaproterenol before the work shift. Gupta et al9 demonstrated that for hemp workers who complained of respiratory diseases and had positive skin tests to hemp allergen, an improvement in respiratory symptoms and ventilatory capacity (forced vital capacity (FVC) and FEV1) was brought about by specific immunotherapy. Chen10 reported 31 workers with symptoms of asthma among 242 hemp workers studied. The same author observed a correlation between positive skin tests and increased immunoglobulin E concentrations in these workers.

Comparative studies of prevalence of respiratory symptoms in workers exposed to different textile dusts indicate that hemp and flax dust are more potent than cotton dust in producing byssinotic symptoms.11 Bouhuys et al12 in a study of Spanish hemp workers described an extremely high prevalence of chronic respiratory symptoms.
including cough, phlegm, and dyspnoea. Many of the workers showed irreversible loss of pulmonary function when compared to a control group of the same age. Ninety one per cent of the hemp workers had a history of Monday dyspnoea while working with hemp. Bouhuy and Zuskin studied this cohort over a seven year follow up period. They showed that hemp workers with more than 20 years of exposure had a significantly higher occurrence of chronic cough, phlegm, dyspnoea, and a significantly larger annual decline in FEV₁ than the control subjects.

The goal of the present study of hemp workers was to establish current prevalence of respiratory symptoms in this industry and to better characterise abnormalities of ventilatory capacity in hemp workers.

Subjects and methods
Two groups of female hemp workers employed in two different mills (46 in mill A (group A), 38 in mill B (group B)) and a group of 27 male hemp workers employed in mill A were included in the study. All workers were currently employed in the processing of hemp fibres in the areas of carding and spinning. The hemp processed in these industries was ultimately used for the manufacture of rope, firehose, rugs, and clothing. Workers in both mills frequently rotated jobs so that they were exposed to all phases of the processing. The mean age of the women in group A was 39 (range 19–63) with a mean exposure of 15 (range 1–36) years. For the women of group B the mean age was 40 (range 21–55) with a mean exposure of 16 (range 2–33) years. The group of male hemp workers had a mean age of 43 (range 22–52) and a mean exposure of 20 (range 6–30) years. The women were mostly non-smokers (83% in mill A and 89% in mill B) whereas the men were predominantly smokers (92%; average 20 cigarettes daily). A group of 49 female control workers and 30 male control workers were included in the study. The age, smoking habits, and duration of employment of the controls were similar to those of the hemp workers. The control workers were employed as packers in the food industry with no exposure to noxious dusts or fumes.

Respiratory symptoms
Respiratory symptoms were documented using a modification of the Medical Research Council Committee questionnaire on respiratory symptoms with additional questions on byssinosis. In all workers a detailed occupational and smoking history was recorded. Specific symptoms were defined as follows:
chronic cough or phlegm—cough or phlegm production or both for at least three months a year;
chronic bronchitis—cough and phlegm for a minimum of three months a year and for not less than two successive years; dyspnoea grades, grade 3—shortness of breath when walking with other people at an ordinary pace on level ground, grade 4—shortness of breath when walking at their own pace on level ground; occupational asthma—recurrent attacks of dyspnoea, chest tightness, wheezing, and impairment of pulmonary function of the obstructive type diagnosed by physical examination and spirometric measurements during exposure to dust at or after work; byssinosis grades, 1/2—occasional chest tightness on Monday; 1—chest tightness and or difficulty in breathing or both on Mondays only, 2—chest tightness or difficulty in breathing or both on Mondays and other work days.

Acute symptoms that developed during a work shift were also recorded for all workers. Symptoms comprised cough, irritation or dryness of the throat, secretions, dryness or bleeding of the nose, eye irritation, and headache.

Ventilatory capacity studies
Ventilatory capacity was measured by recording maximum expiratory flow volume (MEFV) curves on a Pneumoscreen spirometer (Jaeger, Federal Republic of Germany). Work shift changes in ventilatory capacity were measured by recording MEFV curves on Monday before (6.00 am) and after (2.00 pm) a work shift. From MEFV curves the forced vital capacity (FVC), the forced expiratory volume in one second (FEV₁), and flow rates at 50% and 25% vital capacity (FEF₁₅₀, FEF₁₂₅) were measured. Monday preshift values were compared with expected values established by the Commission des Communautés Européennes (CECA) for FVC and FEV₁ with normal values described by Cherniack and Raber for FEF₁₅₀ and FEF₁₂₅.

Environmental dust measurements
Airborne dust was sampled during an eight hour work shift in the workplace of the examined workers. Casella personal samplers with millipore field monitors and millipore AA membrane filters were used to estimate total exposure to dust. In addition two stage stationary samplers consisting of a membrane filter preceded by a horizontal elutriator were used to collect the respirable fraction.

Environmental bacterial analysis
Agar plates were placed in the work environment to collect bacterial flora in the work areas.

Statistical analysis
Measurements of ventilatory capacity were analysed using the t test for differences of paired (across shift changes) and unpaired (comparing baseline to predicted values) variables. The χ² test and Fisher’s exact test were used for testing differences in the prevalence of respiratory symptoms; p < 0.05 was considered statistically significant.
Respiratory symptoms and lung function in hemp workers

Results

Respiratory Symptoms
Table 1 shows the prevalence of chronic respiratory symptoms for the two groups of women and for the male hemp workers and the control workers. There were no significant differences in the prevalence of chronic respiratory symptoms between groups A and B of female hemp workers. By comparison with the control group, a significantly higher prevalence of all chronic respiratory symptoms was found for women in group B (p < 0.01) and for chronic cough, dyspnoea, nasal catarrh and sinusitis (p < 0.01), and asthma (p < 0.05) for women in group A. For the male hemp workers the differences between the exposed and the control workers were significant only for nasal catarrh (p < 0.05) and sinusitis (p < 0.01).

A high prevalence of byssinosis was found in both groups of female hemp workers (A, 47.8%; B, 57.9%) and among male hemp workers (66.7%) (table 1). These symptoms were analysed by grades of byssinosis. For female hemp workers the highest prevalence was recorded for byssinosis grade 1 (A, 19.6%; B, 31.6%) followed by grade 2 (A, 19.6%; B, 22.2%) and grade 1/2 (A, 10.9%; B, 5.3%). In male hemp workers 44.4% had byssinosis grade 1, 22.2% had grade 2, and none had grade 1/2. Byssinotic symptoms were not found among control workers of either sex.

A high prevalence of acute symptoms during the work shift was recorded in female and in male hemp workers (table 2). The highest prevalence of these acute symptoms was recorded for eye irritation, cough, and dryness of the throat and nose.

Ventilatory Capacity Studies
Table 3 presents mean across shift changes in ventilatory capacity in the two groups of female workers (A and B). Statistically significant across shift reductions (p < 0.01) were similar for women from both mills. These across shift changes were largest (expressed as per cent change from baseline) for FEF₂₅ (A = 10.4%; B = 9.4%) and FEF₅₀ (A = 13.4%; B = 14.8%) followed by FVC.

Table 1: Prevalence of chronic respiratory symptoms in hemp workers and controls

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean age (y)</th>
<th>Mean exposure (y)</th>
<th>Chronic cough</th>
<th>Chronic phlegm</th>
<th>Chronic bronchitis</th>
<th>Dyspnoea grades 2 & 3</th>
<th>Asthma</th>
<th>Nasal catarrh</th>
<th>Sinusitis</th>
<th>Byssinosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women</td>
<td></td>
</tr>
<tr>
<td>Hemp A</td>
<td>39</td>
<td>15</td>
<td>26**</td>
<td>9</td>
<td>16**</td>
<td>4*</td>
<td>16**</td>
<td>12**</td>
<td>22**</td>
<td></td>
</tr>
<tr>
<td>(n=46)</td>
<td>(n=38)</td>
<td></td>
<td>(56.5)</td>
<td>(19.6)</td>
<td>(21.7)</td>
<td>(34.8)</td>
<td>(8.7)</td>
<td>(26.1)</td>
<td>(47.8)</td>
<td></td>
</tr>
<tr>
<td>Hemp B</td>
<td>40</td>
<td>16</td>
<td>19**</td>
<td>7**</td>
<td>8**</td>
<td>7**</td>
<td>8**</td>
<td>17**</td>
<td>19**</td>
<td>22**</td>
</tr>
<tr>
<td>(n=38)</td>
<td>(n=38)</td>
<td></td>
<td>(50.0)</td>
<td>(18.4)</td>
<td>(18.4)</td>
<td>(21.1)</td>
<td>(21.1)</td>
<td>(44.7)</td>
<td>(50.0)</td>
<td>(57.9)</td>
</tr>
<tr>
<td>Controls</td>
<td>30</td>
<td>15</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>(n=49)</td>
<td>(n=49)</td>
<td></td>
<td>(12.2)</td>
<td>(8.2)</td>
<td>(8.2)</td>
<td>(4.1)</td>
<td>(10.2)</td>
<td>(6.1)</td>
<td>(6.1)</td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td></td>
</tr>
<tr>
<td>Hemp</td>
<td>43</td>
<td>20</td>
<td>13</td>
<td>11</td>
<td>11</td>
<td>7</td>
<td>2</td>
<td>7**</td>
<td>9**</td>
<td>18**</td>
</tr>
<tr>
<td>(n=27)</td>
<td>(n=27)</td>
<td></td>
<td>(48.1)</td>
<td>(40.7)</td>
<td>(40.7)</td>
<td>(25.9)</td>
<td>(7.4)</td>
<td>(25.9)</td>
<td>(33.3)</td>
<td>(66.7)</td>
</tr>
<tr>
<td>Controls</td>
<td>42</td>
<td>18</td>
<td>11</td>
<td>10</td>
<td>10</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>(n=30)</td>
<td>(n=30)</td>
<td></td>
<td>(36.7)</td>
<td>(33.3)</td>
<td>(33.3)</td>
<td>(11.1)</td>
<td>(6.7)</td>
<td>(6.7)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Difference between exposed and control workers statistically significant, *p < 0.05; **p < 0.01.

Table 2: Prevalence of acute symptoms during the work shift in female and male hemp workers

<table>
<thead>
<tr>
<th>Group</th>
<th>Throat</th>
<th>Nose</th>
<th>Eye irritation</th>
<th>Headache</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Irritation</td>
<td>Dryness</td>
<td>Secretion</td>
<td>Dryness</td>
</tr>
<tr>
<td>Women</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemp A</td>
<td>36</td>
<td>24</td>
<td>29</td>
<td>17</td>
</tr>
<tr>
<td>(n=46)</td>
<td>(78.3)</td>
<td>(52.2)</td>
<td>(63.0)</td>
<td>(36.9)</td>
</tr>
<tr>
<td>Hemp B</td>
<td>31</td>
<td>27</td>
<td>31</td>
<td>10</td>
</tr>
<tr>
<td>(n=38)</td>
<td>(81.6)</td>
<td>(71.1)</td>
<td>(81.6)</td>
<td>(26.3)</td>
</tr>
<tr>
<td>Men</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemp</td>
<td>22</td>
<td>17</td>
<td>19</td>
<td>8</td>
</tr>
<tr>
<td>(n=27)</td>
<td>(81.5)</td>
<td>(62.9)</td>
<td>(70.3)</td>
<td>(29.6)</td>
</tr>
</tbody>
</table>
FEFP2

Figure hemp workers with and different (p

*Decrease FEFP, across of workers were of morning)

FEV, (1) = n female FEF25 for than byssinotic subjects (group =B

expected, being particularly tistically significant (p

FEV1 FEF25 FEF50

hemp workers. There were significant across shift reductions in all measurements of ventilatory capacity (p < 0.01). These reductions were the greatest when measured by FEF50 (−15.1%), followed by FEF25 (−14.6%), FEV1 (−9.3%) and FVC (−7.1%). Figure 2 shows the mean measured baseline (Monday preshift) values for the male workers. These were significantly less than predicted. Analysis of the individual measured data in relation to normal values showed that three (11.1%) had FVC, one (3.7%) had FEV1, three (11.1%) had FEF50, and four (18.5%) had FEF25 below 80% but greater than 70% of the expected values. A larger number of workers had measured values of 70% or less than expected (FVC=3 (11.1%), FEV1=6 (22.2%), FEF50=7 (25.9%), FEF25=10 (37.0%). All of these workers had symp-toms of byssinosis.

Table 5 shows data for ventilatory capacity in 12 female hemp workers with occupational asthma. Significant reductions over the work shift were recorded for FEV1, FEF25 and FEF50 (p < 0.01). In relation to predicted values, values for baseline lung function (FVC, 82.9%; FEV1, 76.7%; FEF50, 41.7%; FEF25, 60.9%) were significantly lower for all tests.

Table 4 Across shift changes in ventilatory capacity in 27 male hemp workers

<table>
<thead>
<tr>
<th>Test</th>
<th>Before shift mean (SD)</th>
<th>Difference</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC (l)</td>
<td>4:23 (1:01)</td>
<td>−0:30 (−7:1%)*</td>
<td><0.01</td>
</tr>
<tr>
<td>FEV1 (l)</td>
<td>3:22 (0:99)</td>
<td>−0:30 (−9:3%)</td>
<td><0.01</td>
</tr>
<tr>
<td>FEF25 (l/sec)</td>
<td>4:44 (1:90)</td>
<td>−0:67 (−15:1%)</td>
<td><0.01</td>
</tr>
<tr>
<td>FEF50 (l/sec)</td>
<td>2:05 (0:85)</td>
<td>−0:30 (−14:6%)</td>
<td><0.01</td>
</tr>
</tbody>
</table>

*Decrease as percentage of baseline measurement.

Figure 1 Mean Monday preshift FVC, FEV1, FEF25, and FEF50, expressed as per cent of predicted (SE) in 44 female hemp workers with 40 without byssinosis. *Significantly different (p < 0.01).

Table 3 Across shift changes in ventilatory capacity in female hemp workers

<table>
<thead>
<tr>
<th>Test</th>
<th>Before Group A (n = 46)</th>
<th>Difference</th>
<th>p Value</th>
<th>Before Group B (n = 38)</th>
<th>Difference</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC (l)</td>
<td>3:52 (0:52)</td>
<td>−0:31 (−8.8%)*</td>
<td><0.01</td>
<td>3:50 (0:65)</td>
<td>−0:21 (−6.0%)*</td>
<td><0.01</td>
</tr>
<tr>
<td>FEV1 (l)</td>
<td>2:77 (0:45)</td>
<td>−0:25 (−9.0%)</td>
<td><0.01</td>
<td>2:73 (0:54)</td>
<td>−0:22 (−8.1%)</td>
<td><0.01</td>
</tr>
<tr>
<td>FEF25 (l/sec)</td>
<td>4:05 (0:79)</td>
<td>−0:42 (−10.4%)</td>
<td><0.01</td>
<td>3:95 (1:06)</td>
<td>−0:37 (−9.4%)</td>
<td><0.01</td>
</tr>
<tr>
<td>FEF50 (l/sec)</td>
<td>1:79 (0:61)</td>
<td>−0:24 (−13.4%)</td>
<td><0.01</td>
<td>1:76 (0:60)</td>
<td>−0:26 (−14.6%)</td>
<td><0.01</td>
</tr>
</tbody>
</table>

*Decrease as percentage of baseline measurement.

(A = 8.8%; B = 6.0%) and FEV1 (A = 9.0%; B = 8.1%). There was no difference in the magnitude of across shift reductions of FVC and FEV1 between female workers with and without byssinosis. Among byssinotic subjects (group A and B combined, n = 88), however, the mean across shift reductions for FEF50 (−12.9%) and FEF25 (−16.0%) were greater than for non-byssinotic subjects (FEF50, −5.4%; FEF25, −9.2%) and these differences were statistically significant (p < 0.05).

Figure 1 shows the mean baseline data for ventilatory capacity (measured pre shift on Monday morning) in relation to expected normal values, separately in female workers with and without byssinosis (groups A and B combined). All mean measures of ventilatory function in female hemp workers were significantly lower (p < 0.01) than expected, being particularly reduced for FEF25. The mean FEF25 was 69% of that predicted in workers with, and 75% of that predicted in workers without byssinosis. By analysing individual data in relation to normal values, three (3.4%) had FVC, seven (8.3%) had FEV1, 13 (15.5%) had FEF50 and 11 (13.1%) had FEF25 below 80% but greater than 70% of expected values. The number of female hemp workers in groups A and B that had FEF50 and FEF25 below 70% of normal values was 14 (16.7%) for FEF50 and 36 (42.9%) for FEF25.

Table 4 presents data for ventilatory capacity in 27 male hemp workers. There were statistically significant across shift reductions in all measurements of ventilatory capacity (p < 0.01). The number of workers had measured byssinosis (group A and B combined). All mean measures of ventilatory function in male hemp workers were significantly lower (p < 0.01) than expected, being particularly reduced for FEF25. The mean FEF25 was 69% of that predicted in workers

*With byssinosis
Without byssinosis

Table 5 shows data for ventilatory capacity in 12 female hemp workers with occupational asthma. Significant reductions over the work shift were recorded for FEV1, FEF25 and FEF50 (p < 0.01). In relation to predicted values, values for baseline lung function (FVC, 82.9%; FEV1, 76.7%; FEF50, 41.7%; FEF25, 60.9%) were significantly lower for all tests.

Table 4 Across shift changes in ventilatory capacity in 27 male hemp workers

<table>
<thead>
<tr>
<th>Test</th>
<th>Before shift mean (SD)</th>
<th>Difference</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC (l)</td>
<td>4:23 (1:01)</td>
<td>−0:30 (−7.1%)*</td>
<td><0.01</td>
</tr>
<tr>
<td>FEV1 (l)</td>
<td>3:22 (0:99)</td>
<td>−0:30 (−9.3%)</td>
<td><0.01</td>
</tr>
<tr>
<td>FEF25 (l/sec)</td>
<td>4:44 (1:90)</td>
<td>−0:67 (−15:1%)</td>
<td><0.01</td>
</tr>
<tr>
<td>FEF50 (l/sec)</td>
<td>2:05 (0:85)</td>
<td>−0:30 (−14:6%)</td>
<td><0.01</td>
</tr>
</tbody>
</table>

*Decrease as percentage of baseline measurement.
Respiratory symptoms and lung function in hemp workers

Discussion

Our data show that exposure to hemp dust is associated with the development of a high prevalence of acute and chronic respiratory symptoms. These data are similar to previous observations by Barbero and Flores who also found high prevalence of chronic respiratory symptoms among active and retired hemp workers.2,19 This group also found that many hemp workers die at an early age presumably as a consequence of their exposure.

The prevalence of byssinosis among our hemp workers is high and similar to that previously reported by Valic et al who described byssinosis prevalences ranging from 15-1% to 40-6%. The same authors also described significant reductions in ventilatory capacity across the work shift. A high prevalence of byssinosis was also described by Bouhuys et al who reported a byssinosis prevalence of 77% among Spanish hemp workers.

By studying the effect of different vegetable dusts on workers Valic and Zuskin concluded that the highest prevalences of byssinosis grades were found for hemp (44%) and flax workers (43%) followed by cotton workers (27%). The prevalence of other chronic respiratory symptoms was also highest among hemp workers, followed by flax and cotton workers. The significantly higher prevalences of most chronic respiratory symptoms in hemp workers suggests that exposure to hemp dust is an important contributor to occupational airway disease. Importantly, Valic and Zuskin have demonstrated that in hemp workers byssinosis symptoms develop after an exposure as short as one to two years.

Acute symptoms noted during the work shift were very common in this study; by contrast in a previous study of workers not exposed to airway irritants only two workers (9.5%) complained of cough and one (4.8%) of headache occasionally during the work shift. This observation of frequent symptoms and marked changes across the work shift suggests that hemp dust is a very potent airway irritant or that the industries concerned with the processing of this vegetable product are significantly more dusty (or less well regulated) than comparable non-hemp mills.

The acute byssinotic effects of exposure to hemp dust are well documented by the magnitude of the FEV1 and particularly the FEF25 and the FEF25 changes during the Monday work shift. In our study the acute decreases in FEF20 and FEF25 were more pronounced than those in FEV1. Bouhuys et al showed that respiratory disease among hemp workers is a serious and disabling illness, particularly among those engaged in batting and hacking of biologically retted soft hemp (C. sativa). That the dust developed during hemp batting has potent bronchoconstrictor properties was also shown by the development within one hour of dust exposure of

Table 5. Ventilatory capacity and across shift changes in female hemp workers with asthma (n = 12)

<table>
<thead>
<tr>
<th>Test</th>
<th>Observed (before shift) mean (SD)</th>
<th>P Value</th>
<th>Difference</th>
<th>Before-after</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC</td>
<td>3.06 (0.76) (82.9%)</td>
<td>0.01</td>
<td></td>
<td>-0.07 (-2.6%)</td>
<td><0.01</td>
</tr>
<tr>
<td>FEV1</td>
<td>2.24 (0.71) (76.7%)</td>
<td>0.01</td>
<td></td>
<td>-0.21 (-9.4%)</td>
<td><0.01</td>
</tr>
<tr>
<td>FEF25</td>
<td>1.39 (0.85) (60.9%)</td>
<td>0.01</td>
<td></td>
<td>-0.21 (-15.1%)</td>
<td><0.01</td>
</tr>
</tbody>
</table>

*Significantly different (p < 0.01).

ENVIRONMENTAL DUST MEASUREMENTS

The mean total concentration of hemp dust was 22-35 (range 3.3-68.5) mg/m³ with a mean respirable fraction of 9.93 (range 1.3-38.4) mg/m³. These measurements are much greater than the maximum allowable concentration for vegetable textile dust allowed by Yugoslav occupational standards (total dust, 5 mg/m³; respirable fraction, 1 mg/m³). This may be compared to the United States standard for cotton dust which requires concentrations of 0.2 mg/m³ or less.

ENVIRONMENTAL BACTERIAL ANALYSIS

Results of bacterial sampling in the work environment showed the presence of several different bacterial species including Enterobacter aerogenes, Citrobacter, Pseudomonas aeruginosa, Staphylococcus albus, Escherichia coli, Proteus mirabilis, Enterobacter cloacae, and Enterococcus.
chest tightness, cough, and dyspnoea in healthy subjects whose \(FEV_1 \) decreased from 4-33 to 3-68 l during this exposure.

Recent studies indicate that chronic lung disease in the form of intractable symptoms and irreversible changes in lung function is an integral part of byssinosis.\(^{22,23}\) Cross sectional as well as prospective studies among textile workers indicate higher prevalences of chronic symptoms and an accelerated loss of lung function in textile workers independent of their smoking exposure.\(^{24,25}\) In the current study we document an excess of chronic symptoms and abnormal lung function that relate specifically to Monday prework shift measurements and thus exclude possible across shift contributions to these measurements. Finally, most workers in our cohort were non-smoking women suggesting that the effect on baseline lung function is a result of exposure to dust rather than tobacco smoke.

Endotoxin has been implicated as a possible causative agent in the pathogenesis of byssinosis.\(^{26}\) Our microbiological studies of air quality show the presence of many organisms in the hemp workplace, in particular gram negative bacteria. Nevertheless, the role of endotoxin in byssinosis remains to be more fully defined.\(^{26}\)

Our study showed a very high prevalence of acute and chronic respiratory symptoms and changes in ventilatory capacity in workers employed in the hemp industry in Yugoslavia. We suggest that hemp workers in small poorly regulated mills are at a high risk for acute or chronic lung disease or both. This risk is amplified by the chronic nature of the exposure because retention of workers in these small industries tends to be high. As in other industries prone to byssinosis, pre-employment medical examinations and medical surveillance as well as more stringent industrial hygiene control measures are necessary to safeguard the health of textile workers. Tests of lung function should be performed before and after a work shift by recording \(FEV_1 \) or \(MEFV \) curves on a regular basis. Such examinations allow an assessment of risk in this industry and the identification of sensitive workers who should be followed up. In the case of progressive impairment of lung function or the development of respiratory symptoms, workers should be moved from dusty areas, which carry a high risk of respiratory disease.

The research was supported in part by grant No YF 733 from the National Institutes of Health, Bethesda, Md, USA; grant No RO1 OHO 25593 01A1 from the National Institute of Occupational Safety and Health; and the Henry and Catherine Gaisman and the Miller Foundations, New York, NY, USA.

1. Ramazzini B. De Morbis Artificum Diatriba (translation and notes by Wright, WC); Chicago: University Press, 1940.

Accepted 19 February 1990
Respiratory symptoms and lung function in hemp workers.

E Zuskin, B Kanceljak, D Pokrajac, E N Schachter and T J Witek, Jr

Br J Ind Med 1990 47: 627-632
doi: 10.1136/oem.47.9.627

Updated information and services can be found at:
http://oem.bmj.com/content/47/9/627

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/