High urinary cadmium concentration in a case of gastric cancer

Sir—it is well known that cadmium (Cd) adversely affects renal tubular function at an early stage and may induce osteomalacia in severe cases.1 In 1981 and 1982 the 3119 subjects living in a Cd polluted area in Japan and 289 non-exposed controls were examined by collecting morning urine samples (table 1).2 Since then several subjects with renal tubular dysfunction have been observed.

Among these cases was one showing an extreme increase of urinary Cd concentration. Such a high Cd concentration has never been found, despite our having studied environmental Cd effects for more than 20 years. The 71 year old woman presented in 1982 with slightly raised Cd and β2-microglobulin concentrations in the urine (table 2). One year later the urinary Cd concentration had increased by more than 200 times. This value was higher than the maximum urinary Cd concentration in table 1. Indicators of renal tubular dysfunction such as urinary β2-microglobulin, α2-microglobulin, and metallothionein also showed pronounced increases (table 2). Serum creatinine was 1.38 mg/dl and glomerular function was maintained.

The cadmium concentration in whole blood was 133.0 μg/l. This was also unusually high; the geometric mean and standard deviation of 205 subjects with Table 1. Urinary cadmium concentrations (μg/l) of Cd exposed subjects living in a cadmium polluted area in Japan and controls

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Sex</th>
<th>No</th>
<th>GM</th>
<th>GSD</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd exposed</td>
<td>M</td>
<td>1403</td>
<td>4.02</td>
<td>2.023</td>
<td>0.3</td>
<td>37.5</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>1716</td>
<td>3.86</td>
<td>2.077</td>
<td>0.3</td>
<td>105.5</td>
</tr>
<tr>
<td>Controls</td>
<td>M</td>
<td>130</td>
<td>1.84</td>
<td>1.992</td>
<td>0.2</td>
<td>13.6</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>159</td>
<td>1.69</td>
<td>2.069</td>
<td>0.2</td>
<td>11.0</td>
</tr>
</tbody>
</table>

GM = Geometric mean.
GSD = Geometric standard deviation.

 renal tubular dysfunction caused by exposure to Cd in 1983 was 8.4 ± 1.9 μg/l.

Between these examinations, she was operated on for advanced gastric cancer. Nine months later she died and no necropsy was performed. In those days the mine which was the source of Cd pollution had already closed and the level of Cd exposure had not changed. It may be that invasion of the stomach cancer, with metastases to the liver and peritoneum, and the operation itself caused the transfer of Cd from these organs to the kidneys leading to increased urinary Cd excretion.

T KIDO
R HONDA
I TSURITANI
M ISHIZAKI
Y YAMADA
K NOGAWA

Department of Hygiene,
Kanazawa Medical University,
Uchinada, Ishikawa, 920-02, Japan

References

High urinary cadmium concentration in a case of gastric cancer.
T Kido, R Honda, I Tsuritani, M Ishizaki, Y Yamada and K Nogawa

Br J Ind Med 1989 46: 288
doi: 10.1136/oem.46.4.288

Updated information and services can be found at:
http://oem.bmj.com/content/46/4/288.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/