Health hazards of firefighters: acute pulmonary effects after toxic exposures

P W BRANDT-RAUF, B COSMAN, L FLEMING FALLON JR, T TARANTINI, CATHY IDEMA

From the Division of Environmental Sciences, School of Public Health, Columbia University, New York, NY 10032, and Tarantini Associates Ltd, New York, NY 10012, USA

ABSTRACT As part of an environmental monitoring and medical surveillance programme to evaluate potential health hazards from firefighting, complete baseline medical examinations were performed on a cohort of 77 firefighters. During a ten day study period, 37 follow up medical examinations were performed after exposure to fire to monitor any significant differences in pre-fire and post-fire physiological indices, including pulmonary function and blood counts and chemistries. For the group as a whole, no significant differences were found. For individuals not wearing respiratory protective equipment, however, statistically significant post-fire decrements in FEV₁ and FVC were noted. These decrements were consistent with previously shown levels of exposure to pulmonary toxicants in this cohort. These results support the need for more extensive use of respiratory protective equipment by firefighters.

With the increasing use of synthetic chemical based products in building construction in recent decades, there has been growing concern over the health hazards to firefighters from the inhalation of the toxic components of smoke. Several studies of victims of smoke inhalation and firefighters have shown various acute health effects, particularly decrements in pulmonary function after exposure to smoke. For example, Whitener et al studied pulmonary function in 28 patients after smoke inhalation and observed significant pulmonary obstruction within hours of exposure. Results of studies of firefighters have been similar. Musk et al studied 39 Boston firefighters after smoke inhalation and noted significant decrements in the forced expiratory volume at one second (FEV₁); 30% of the fire exposures caused a reduction in FEV₁ of 100 cc or more. Loke et al found an excess of changes in pulmonary function compatible with small airways disease (maximum expiratory flow-volume studies with helium/oxygen) in their study of 54 Connecticut firefighters, particularly in cigarette smokers or non-smoking firefighters with at least 25 years of service. Unger et al found persistent decreases in both FEV₁ and forced vital capacity (FVC) in their study of 30 firefighters after severe smoke inhalation. A more recent study of 29 San Francisco firefighters showed not only a significant fall in FEV₁ or FVC, or both, in 18 of 76 pulmonary function measurements obtained within two hours of exposure to fire but also acute increases in airway responsiveness to methacholine challenge unrelated to baseline airway responsiveness. Several follow up studies of firefighters have raised the serious possibility that the observed acute alterations in pulmonary function may not always be temporary and reversible but that severe or repeated exposure to smoke may lead to chronic lung disease.

We have recently reported a personal environmental hygiene monitoring study of 51 firefighters that showed significant exposures of these firefighters to numerous toxic inhalants (including carcinogens, asphyxiants, particulates, and irritants) during the course of their routine firefighting duties. An extension of this study included medical surveillance of these firefighters with complete baseline medical examinations and follow up evaluations after each fire. This report presents the initial results of that medical surveillance with particular reference to the acute pulmonary effects noted in previous studies.

Methods

The cohort of firefighters studied consisted of 77 professional firefighters in five companies assigned to two firehouses in Buffalo, New York, who volunteered to participate in the environmental monitoring and medical surveillance programme.
medical surveillance programme. These firefighters were given a baseline medical evaluation that consisted of self-administered general health questionnaire, physician administered occupational health questionnaire, physical examination, chest x-ray examination, electrocardiogram, pulmonary function testing (FEV₁ and FVC) using a Collins spirometer model 1300 according to American Thoracic Society criteria, 24 hour urine collection and blood tests (complete blood count with differential, 12 routine serum chemistries, carboxyhaemoglobin level, and methaemoglobin level). They were then fitted out with personal environmental monitoring devices. As each firefighter in this cohort responded to a fire call, information was recorded on the time, date, and location of the fire, the company and firefighter responding to the incident, the type of personal monitoring performed, the activity performed (rescue, fire control, overhaul), characteristics of the fire (type of structure, material burning, smoke intensity), and the use of any respiratory protective equipment. After each fire, the firefighters were immediately taken for follow up testing which included all parts of the baseline evaluation except for the questionnaires, chest x-ray films, and urine collection. Thirty seven appropriate follow up examinations were completed during the 10 day period of the initial investigation, the remaining firefighters being unavailable during the study period owing to holidays, illness, or sick leave for follow up of abnormal baseline findings. As described previously, the study period encompassed 14 fire calls of sufficient duration and magnitude to warrant doing the environmental monitoring and medical surveillance, and these fires also yielded 26 usable personal exposure samples.

Differences in the pre-fire and post-fire values for each of the parameters measured were examined using the t test for comparison of means of paired samples. Statistical significance was assumed for p values less than 0.05.

Results and discussion

The characteristics of the fires and the results of the personal monitoring have been presented previously. Of note are the facts that the fires included residential structures, industrial buildings, and an automobile and that significant levels of carbon monoxide, benzene, sulphur dioxide, hydrogen cyanide, formaldehyde, hydrogen chloride, various halogenated organics (dichlorofluoromethane, trichloroethylene, perchloroethylene, chloroform, methylene chloride, trichlorophenol), toluene, and particulates were found. Baseline medical evaluations were of note for the following abnormal findings: 24 of the 77 firefighters were found to have abnormal pulmonary function consistent with mild to moderate obstructive disease, 14 raised blood pressure, one an abnormal density on chest radiography, 14 some minor electrocardiographic abnormality, 14 abnormal creatinine clearances, and 12 (all smokers) raised carboxyhaemoglobin levels. These individuals were referred for appropriate medical follow up and excluded from further study.

Comparison of pre-fire and post-fire values for the entire group of 37 paired measurements was done for the blood tests, FEV₁, and FVC. No significant differences were found. Reasoning that individuals wearing respiratory protective equipment may have thus successfully avoided any harmful exposures and resultant adverse clinical effects, the data were reanalysed for that group of individuals who did not use any respiratory protective equipment at any time during the course of the fires. It should be noted that there were no differences in testing procedures between the firefighters who wore respiratory protective equipment and those who did not. For this subgroup of 14 firefighters, comparison of pre-fire and post-fire FEV₁ and FVC yielded significant differences. The average baseline value for this subgroup for FEV₁ was 3.80 l compared with an average follow up value of 3.61 l, the difference being statistically significant (p = 0.014). The corresponding pre-fire and post-fire values for FEV₁ for those wearing respiratory protection were 3.80 l and 3.89 l, respectively. The average baseline value for the unprotected group for FVC was 5.03 l compared with an average follow up value of 4.81 l, again a statistically significant difference (p = 0.007). The corresponding pre-fire and post-fire values for FVC for those wearing respiratory protection were 4.99 l and 5.01 l, respectively. The magnitude of these changes is compatible with those noted in other studies. In the cases where simultaneous personal monitoring data were available the individuals not wearing respiratory protection were exposed to significant levels of carbon monoxide, benzene, particulates, and sulphur dioxide and lesser amounts of dichlorofluoromethane, trichloroethylene, chloroform, perchloroethylene and toluene, as described previously; observed levels of some of these—for example, sulphur dioxide at 2.5 ppm—are consistent with levels in other studies that have shown measurable decrements in pulmonary function in exposed individuals. Levels of exposure to carbon monoxide in these individuals ranged from 11 to 167 ppm and on medical examination five of the 14 individuals not wearing respiratory protective equipment were found to have increases in their carboxyhaemoglobin levels, although the average difference for the group (1.5% pre-fire v 2.0% post-fire) did not achieve statistical significance. Two individuals were also noted to have serious post-fire rises of their meth-
Health hazards of firefighters: acute pulmonary effects after toxic exposures

Epidemiology, Biostatistics and Environmental Sciences Training Grant ST32CA09529-02. We thank the members of the Buffalo Fire Department, State Fire Administrator Francis A McGarry, Dr A Aquilana, Erie County Medical Center, Dr J Zizz, Erie County Health Department, Dr O Smith-Blackwell, New York State Health Department; and the late Dr Melvin Schwartz who was instrumental in initiating this project.

References

Health hazards of firefighters: acute pulmonary effects after toxic exposures.
P W Brandt-Rauf, B Cosman, L F Fallon, Jr, T Tarantini and C Idema

doi: 10.1136/oem.46.3.209

Updated information and services can be found at:
http://oem.bmj.com/content/46/3/209

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/