Correspondence

Determinants of chronic bronchitis and lung dysfunction in Western Australian gold miners

Sir—Gantt and Lincoln (1988;45:503) of the Philip Morris Management Corporation have wrongly inferred from our study of Western Australian gold miners (1987;44:810–8) that “... lung damaging conditions in mineral operations can cause individuals to be exceptionally likely to find satisfaction in smoking...” What they have ignored is the fact that in table 4 of our paper current smokers were shown to have more than a fourfold increase in obstructive chronic bronchitis after adjustment for mining experience. Thus the adverse effect of smoking cigarettes on lung function was not explained by smokers having worked in a more hazardous environment. Moreover, the prevalence of smoking in the mineral industry should not be compared with the total male population of Australia without adjustment for differences in age structure and socioeconomic status.

Gantt and Lincoln have also ignored one of the essential conditions necessary to substantiate a causal relation, which is the temporal sequence whereby the cause must precede the effect. There is ample evidence to indicate that people smoke first and develop respiratory problems later; not the other way around as the tobacco industry would like us to believe.

C D'ARCY J HOLMAN
P PSAILA-SAVONA

Health Department of Western Australia,
189 Royal Street,
East Perth, Western Australia 6004.

References

Outcome of retrospective cohort studies and study size: a publication bias?

Sir—Referring to their survey, Swaen and Meiijers (1988;45:624–9) are surprised to find that there is no relation between the size of published retrospective cohort studies and their propensity to show “positive” results. Since the relation between size and power of studies is indisputable, what they have described may be attributable to publication bias. This is “the phenomenon in which studies with positive results are more likely to be published than studies with negative results,” whether this be due to selection on the part of the author or the editor. Good evidence for publication bias in general medical publications exists1 and, in particular, the extent of the bias is greater the smaller the study. This can be explained thus: an editor (author) may be reluctant to publish (submit) the results of a small study unless it shows a “significant” result, whereas non-significant results in large studies are considered more publishable. Greater “selection” of small studies according to their results would tend to hide the relation between size and power in published work.

Publication bias can be a serious problem in the interpretation of scientific research—for example, it has been suggested that the association reported between passive smoking and lung cancer is an artifact of publication bias.2 Begg and Berlin state that “methodological standards for information dissemination” (via journal articles) “is a topic which urgently requires attention” and offer some suggestions.1

ROSANNE MCNAMEE

Occupational Health Unit,
Department of Community Medicine,
University of Manchester,
Stopford Building,
Oxford Road,
Manchester M13 9PT.

References

Phenoxy herbicides and non-Hodgkin's lymphoma in New Zealand: frequency and duration of herbicide use

Sir—I have previously reported the findings of a New Zealand case-control study of non-Hodgkin's lymphoma and exposure to phenoxy herbicides.1 More recently, this study has been expanded to include a total of 183 male cases of non-Hodgkin's lymphoma aged 20–69 registered with the New Zealand Cancer Registry during the period 1977–81, and 338 male controls with other forms of cancer matched for age and year of registration.2 This study was initiated as a result of the malignant lymphoma study of Hardell et al in Sweden.1 In both studies subjects were classified as exposed to phenoxy herbicides if they had used these chemicals for at least one day. Using this
New Zealand non-Hodgkin’s lymphoma case-control study: findings by duration and frequency of phenoxy herbicide use

<table>
<thead>
<tr>
<th>Duration of use (years):</th>
<th>Cases</th>
<th>Cancer controls</th>
<th>Odds ratio*</th>
<th>95% Confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–4</td>
<td>139</td>
<td>266</td>
<td>1.0</td>
<td>—</td>
</tr>
<tr>
<td>1–4</td>
<td>16</td>
<td>23</td>
<td>1.1</td>
<td>0.6–2.3</td>
</tr>
<tr>
<td>5–14</td>
<td>9</td>
<td>17</td>
<td>0.8</td>
<td>0.3–2.0</td>
</tr>
<tr>
<td>≥15</td>
<td>15</td>
<td>27</td>
<td>1.2</td>
<td>0.6–2.3</td>
</tr>
<tr>
<td>Unknown</td>
<td>4</td>
<td>5</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency of use (days/year):</th>
<th>Cases</th>
<th>Cancer controls</th>
<th>Odds ratio*</th>
<th>95% Confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>139</td>
<td>266</td>
<td>1.0</td>
<td>—</td>
</tr>
<tr>
<td>1–4</td>
<td>20</td>
<td>40</td>
<td>0.9</td>
<td>0.5–1.6</td>
</tr>
<tr>
<td>5–9</td>
<td>8</td>
<td>11</td>
<td>1.2</td>
<td>0.4–3.3</td>
</tr>
<tr>
<td>10–19</td>
<td>4</td>
<td>3</td>
<td>2.2</td>
<td>0.4–12.6</td>
</tr>
<tr>
<td>≥20</td>
<td>5</td>
<td>7</td>
<td>1.1</td>
<td>0.3–4.1</td>
</tr>
<tr>
<td>Unknown</td>
<td>7</td>
<td>11</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

*Adjusted for decade of birth and whether the patient or next of kin was interviewed.

In response to this hypothesis I have reanalysed the New Zealand data. Some categories involve small numbers, but overall there is little evidence of an association of non-Hodgkin’s lymphoma either with duration or frequency of phenoxy herbicide use (table). Thus it currently appears unlikely that differences in frequency of phenoxy herbicide use account for the puzzling differences in relative risk estimates obtained in studies in New Zealand, Sweden, and the United States.

N PEARCE

Department of Community Health, Wellington School of Medicine, Wellington, New Zealand.

References

Phenoxy herbicides and non-Hodgkin's lymphoma in New Zealand: frequency and duration of herbicide use.

N Pearce

Br J Ind Med 1989 46: 143-144
doi: 10.1136/oem.46.2.143-b

Updated information and services can be found at:
http://oem.bmj.com/content/46/2/143.3.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/