Occupational exposure to formaldehyde and histopathological changes in the nasal mucosa

C Edling, H Hellquist, L Ödqvist

From the Department of Occupational Medicine, at University Hospital, S-751 85 Uppsala, and University Hospital, Linköping, Sweden, College of Medicine; King Saud University, Abha, Saudi Arabia, and Department of Otorhinolaryngology; University Hospital, Linköping, Sweden

ABSTRACT To study the cytotoxic effect of formaldehyde on the human nasal mucosa 75 men with occupational exposure to formaldehyde or to formaldehyde and wood dust, were examined, looking particularly at early signs of irritative effects and histopathological changes in the nasal mucosa. All men underwent a medical examination and a nasal biopsy specimen was examined by a pathologist and graded from 0–8 according to the morphological changes. A high frequency of nasal symptoms, mostly a running nose and crusting, was related to exposure to formaldehyde. Only three men had a normal mucosa; the remainder had loss of cilia and goblet cell hyperplasia (11%) and squamous metaplasia (78%); in six cases (8%) there was a mild dysplasia. The histological grading showed a significantly higher score when compared with unexposed contents (2.9 v 1.8). There was no dose response relation, no malignancies, and no difference in the histological score between those exposed to formaldehyde or to formaldehyde and wood dust.

Formaldehyde is a widely used chemical, primarily in the production of specific resins although it is also used in a variety of other industries and professions, including hospitals and dentistry. Well known toxic effects of exposure to formaldehyde are irritation of mucous membranes and allergic sensitisation of the skin. During the past few years, some controversy has arisen over the possible risk of human cancer posed by exposure to formaldehyde. After long term exposure, mutagenic effects have been shown in vitro and carcinogenic effects in experimental animals.

In view of the finding of squamous cell carcinoma in the nasal cavity of rats and mice exposed to formaldehyde, several epidemiological studies have been undertaken. In some studies an increased risk of cancer has been observed in jobs involving exposure to formaldehyde. Other studies, however, have failed to show such an association.

When discussing a possible risk of cancer not only is the endpoint of interest but also the possibility of the early detection of any precancerous lesions. Most authors consider that cancer caused by exposure to formaldehyde is unlikely in sites other than those in direct contact with the gas. Studies showing an increase of nasal carcinoma among rodents have also shown dose dependent and reversible changes on the nasal mucosa such as rhinitis, epithelial dysplasia, and squamous metaplasia. Some of these irritative effects may be regarded as precancerous lesions and therefore be an early sign of exposure to a carcinogen.

We have studied 75 men occupationally exposed to formaldehyde to look for early signs of irritative effects on the nasal mucosa. Some preliminary results of these studies have already been published.

Subjects and methods

All 104 male workers at three different plants, two processing particle boards, and one laminae, and with occupational exposure to formaldehyde were invited to take part in the study. Those accepting the invitation (72%) underwent a medical examination, which included a nasal biopsy.

By taking a careful history, the exposure time, past diseases, the duration and intensity of different symptoms relating to the respiratory tract and their relation to workplace exposure, and smoking habits were noted. Changes from normal were evaluated in a clinical examination of the nose and nasopharynx.

Biopsy specimens with a diameter of 2 mm were taken with forceps under local anaesthesia 1 cm behind the anterior edge of the inferior turbinate. The specimens were fixed in 10% neutral buffered formalin and embedded in paraffin, cut at various levels, and stained with haematoxylin and eosin. The sections,

Accepted 21 September 1987
Fig 1 Nasal mucosa showing normal cylindric cells with cilia.

Fig 2 Nasal mucosa showing metaplasia where normal cylindric cells have been replaced and there are no cilia.
Occupational exposure to formaldehyde and histopathological changes in the nasal mucosa

Table 1 Histological characteristics and scores used for grading the nasal mucosa

<table>
<thead>
<tr>
<th>Histological characteristics</th>
<th>Point score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal respiratory epithelium</td>
<td>0</td>
</tr>
<tr>
<td>Loss of ciliated cells</td>
<td>1</td>
</tr>
<tr>
<td>Mixed cuboid/squamous epithelium, metaplasia</td>
<td>2</td>
</tr>
<tr>
<td>Stratified squamous epithelium</td>
<td>3</td>
</tr>
<tr>
<td>Keratosis</td>
<td>4</td>
</tr>
<tr>
<td>"Budding" of epithelium</td>
<td>add 1</td>
</tr>
<tr>
<td>Mild or moderate dysplasia</td>
<td>6</td>
</tr>
<tr>
<td>Severe dysplasia</td>
<td>7</td>
</tr>
<tr>
<td>Carcinoma</td>
<td>8</td>
</tr>
</tbody>
</table>

Results

Seventy five men with a mean age of 38 (range 22–63)

Table 2 Number of subjects, age, exposure period, and smoking habits

<table>
<thead>
<tr>
<th>Age</th>
<th>Exposed</th>
<th>Referents</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>Range</td>
<td>22–63</td>
<td>25–60</td>
</tr>
<tr>
<td>Exposure time:</td>
<td>10-5</td>
<td>1-39</td>
</tr>
<tr>
<td>Smokers</td>
<td>26</td>
<td>12</td>
</tr>
<tr>
<td>Ex-smokers</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Never smokers</td>
<td>42</td>
<td>9</td>
</tr>
</tbody>
</table>

and with a mean exposure to formaldehyde of 10·5 years (range 1–39) took part in the study. Twenty six (35%) were smokers, seven (9%) ex-smokers (stopped smoking ten years before examination), and 42 (56%) had never smoked (table 2). In the referent group, aged 25–60 (mean 35), 12 (48%) were smokers, four (10%) ex-smokers, and nine (36%) non-smokers.

The histories disclosed a high frequency of symptoms relating to the eyes and upper airways. Nasal symptoms, mostly running nose and crusting related to the exposure to formaldehyde, were noted in 60% of the subjects; 75% complained of running eyes when exposed to formaldehyde. Twelve (16%) mentioned a history of upper airways allergy.

Clinical examination showed a grossly normal nasal mucosa in 75% of the cases, whereas the rest of the exposed workers had swollen or dry changes or both of the nasal mucosa.

The histological examination (table 3) showed that only three of the cases had a normal, ciliated pseudo-stratified epithelium (fig 1). In eight there was a loss of ciliated cells and goblet cell hyperplasia, in 59 squamous metaplasia (fig 2), and in six a mild dysplasia. The histological grading showed a significantly higher score in the exposed group compared with the referents, 2-9 versus 1·8; p < 0·05 (Wilcoxon).

When relating the histological score to duration of exposure, the mean histological score was about the same regardless of years of employment (table 4). Ten men had been exposed to formaldehyde for more than 20 years and their average histological score was 2·5. The average exposure time for the six men with "mild dysplasia" was six years with no dose response relation. Exposed smokers had a higher (non-significant) score than ex-smokers and non-smokers.

To evaluate a possible combined effect of formaldehyde and wood dust on the nasal mucosa the men working in the particle board plants, and consequently exposed to both formaldehyde and wood dust, were compared with the workers from the laminae plant, exposed only to formaldehyde; no difference in the histological scores was found.
had an unusually low score. The average score of 1.8, however, is higher than that of 1.3 found in the non-industrial reference group of 45 subjects used by Torjussen et al. This indicates that our reference group is representative of the non-industrially exposed population.

Similar pathological changes of the nasal mucosa have earlier been reported as due to age, smoking, and various types of occupational exposures including wood dust, nickel, oil mist, solvents, and dicumylperoxide. In the present study the influence of age and smoking was controlled by the similarity between the exposed and referents in this respect and occupational factors other than formaldehyde and wood dust could be ruled out. Since there were no differences in average histopathological score between the groups exposed to both formaldehyde and wood dust and the group exposed only to formaldehyde we interpreted the histopathological changes as due to exposure to formaldehyde. Blair et al have suggested that simultaneous exposure to formaldehyde and particulates may increase the risk of tumour but in this study exposure to wood dust does not seem to enhance the effect of exposure to formaldehyde. Smoking may have a modifying and aggravating effect on the histological picture which is reflected in a higher mean histological score for smokers despite the same duration of exposure to formaldehyde as those who have never smoked.

In animal experiments formaldehyde has been shown to induce nasal cancer at rather high exposure levels, 5–14 ppm. The tumours show a sharp concentration response relation with none occurring in the 2 ppm group. At that exposure level, however, epithelial dysplasia and squamous metaplasia were found, the same histopathological changes as found in this study.

When considering the carcinogenic response to formaldehyde it has been discussed whether it is an epigenetic or a genetic reaction. The epigenetic reaction is due not to the reaction of the chemical with DNA but to the overload of the normal DNA repair mechanism. The important difference in epigenetic, as opposed to genetic, mechanisms is that in a genetic mechanism there is a potential, no matter how small, for response at any exposure level. An epigenetic mechanism, however, implies a threshold level below which there is no response. The animal data on formaldehyde toxicity suggest that it is an epigenetic agent and that formaldehyde induced metaplasia is an irritant response. This may explain why we did not find a dose response relation; the histopathological changes were of the same degree regardless of exposure time as long as it exceeded a couple of years. This is also in accordance with the animal findings that exposure to high concentrations for a few hours is

Table 4 Average histological score of exposed workers in relation to years of employment

<table>
<thead>
<tr>
<th>Employment (years)</th>
<th>≤ 5</th>
<th>6–10</th>
<th>> 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of men</td>
<td>23</td>
<td>28</td>
<td>24</td>
</tr>
<tr>
<td>Average score</td>
<td>2.7</td>
<td>2.8</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Discussion

The results of this study indicate that occupational exposure to formaldehyde in the range of 0.1–1.1 mg/m³ (Swedish TLV 1.0 mg/m³) may result in pathological changes in the nasal mucosa when compared with non-exposed.

The design of the study is cross sectional and since participation was voluntary and the participation rate only 72% it may possibly be that only people with symptoms from the upper airways took part—that is, there was some selection bias. On the other hand, if people with symptoms caused by the exposure leave the plant a cross sectional design will underestimate the true effect of exposure.

Most of the non-participants (83%) worked shifts at one of the particle board plants and were off work on the days the examination took place. At the two other plants the participation rate was about 90%. To check possible selection effects we undertook a questionnaire survey among the exposed non-participating men at the particle board plant where the number of drop outs was highest (55%). The questions were the same as those asked the other participants; the response rate was 92% and the answers showed no obvious differences in age distribution, exposure time, nasal symptoms, or smoking habits compared with the group studied at the same plant (table 5). These findings suggest that the high frequency of symptoms and histopathological changes found in this study were not due to selection bias overestimating the result.

Another explanation for the findings could be that the unexposed reference group was too healthy and

Table 5 Number of men, age, exposure period, smoking habits, and frequency of symptoms of participants and non-participants at one particle board plant

<table>
<thead>
<tr>
<th></th>
<th>Participants</th>
<th>Non-participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mean)</td>
<td>38</td>
<td>36</td>
</tr>
<tr>
<td>Exposure time (mean)</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Smokers (%)</td>
<td>50</td>
<td>35</td>
</tr>
<tr>
<td>Ex-smokers (%)</td>
<td>36</td>
<td>45</td>
</tr>
<tr>
<td>Never smokers (%)</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>Symptoms, eyes (%)</td>
<td>73</td>
<td>85</td>
</tr>
<tr>
<td>Symptoms, nose (%)</td>
<td>68</td>
<td>70</td>
</tr>
<tr>
<td>Symptoms, throat (%)</td>
<td>59</td>
<td>75</td>
</tr>
</tbody>
</table>
likely to cause greater damage to the mucosa than longer exposures at lower concentrations. We have not been able to study the question of reversibility but if the effect is that of an irritant one might expect a change towards normal after the cessation of exposure.

Milder changes in the nasal mucosa lead to more or less severe symptoms but no serious illness, whereas higher degrees of alterations in the mucosa, such as dysplasia, should be considered to be precancerous.21

In a study of workers exposed to nickel, a recognised occupational nasal carcinogen, Torjussen et al found dysplasia in 22% of the exposed compared with 8% in the present study.24 In that study the workers with the longest period of employment had the highest average score.

This study indicates that dysplastic changes similar to those observed in animal studies may be present among workers exposed to low levels of formaldehyde. The present results, however, with those of the animal and epidemiological studies (cf Partanen et al)29 suggest that the risk of nasal cancer for man, if any, is small when exposure levels are kept well below 2 ppm. This view is further strengthened by the results from the study of 26,561 industrial workers exposed to formaldehyde in the United States, where no excess mortality from cancer of the nasal cavity was found,28 although further analyses of these data have indicated a dose dependent association of nasopharyngeal cancer with exposure to formaldehyde and particulates.31

The study was supported by the Swedish Work Environment Fund.

References

Occupational exposure to formaldehyde and histopathological changes in the nasal mucosa.
C Edling, H Hellquist and L Odkvist

Br J Ind Med 1988 45: 761-765
doi: 10.1136/oem.45.11.761

Updated information and services can be found at:
http://oem.bmj.com/content/45/11/761

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/