Potential health risks from the use of fibrous mineral absorption granulates

K RÖDELSPERGER, B BRUCKEL, J MANKE, H-J WOITOWITZ, F POTT

From the Institute and Policlinic for Occupational and Social Medicine of the Justus-Liebig-University of Giessen, 6300 Giessen, and Medical Institute for Environmental Hygiene, University of Düsseldorf, 4000 Düsseldorf, Federal Republic of Germany

ABSTRACT Attapulgite (palygorskite) and sepiolite are fibrous clay minerals used commercially as components in a wide variety of products including oil and grease adsorbers, carriers for pharmaceuticals, cosmetics, and pesticides. They are also components of drilling muds and animal litter and they are used as paint thickeners. The current annual worldwide production of these minerals exceeds one million tons. Although fibrous in nature, the fibre length may vary greatly depending on the location of the geological deposits. American attapulgite is short (0.1–2.5 μm in length, median of 0.4 μm) but palygorskite from other parts of the world is much longer (30% longer than 5 μm). Several samples of these materials have been submitted to scanning transmission electron microscopy (STEM). This paper reports the results of microscopic evaluations and makes a comparison with the data from experimental carcinogenicity studies and it is concluded that fibre length is a most important carcinogenic property.

Attapulgite and sepiolite can occur in both long and short fibred varieties. Mesotheliomas were produced by intrapleural and intraperitoneal injections in animal experiments using the long attapulgite only. Extremely short fibrous varieties did not cause tumours after intrapertoneal or intrapleural injection (F Pott, unpublished data).

The analytical scanning transmission electron microscope (STEM) which can detect even very thin fibres was used to examine several samples of attapulgite and sepiolite. The materials were also compared with samples of erionite and crocidolite. In addition to determining fibre geometry the potential for contamination with asbestos fibres was also evaluated. Using the models of Stanton and Pott special attention was given to fibres longer than 5 μm and thinner than 1 μm. Although only a small carcinogenic potential is assumed in the case of shorter fibres with a length between 2 and 5 μm, it has been hypothesised that this potential may increase if a large number of these fibres are present.

Mineralogical description

Of the materials used in industry, the clays attapulgite (palygorskite) and sepiolite (meerschaum) play a major part as adsorption granulates. Unlike the plate form clays, such as bentonite (montmorillonite) and kaolin, attapulgite and sepiolite develop needle like crystals (fig 1). Chemically, they are magnesium silicates with varying proportions of Al and Fe. Apart from their length, their most significant property is their large effective surface; 130 to 310 m²/g for attapulgite and 150 to 250 m²/g for sepiolite. Depending on preliminary treatment, a distinction must be made between colloidal and calcined, thermally activated product types that have a different water solubility.

Production and use

Bignon estimates the production of attapulgite and sepiolite in the western world to be at least 1.2 m tons a year. In the United States alone, about 900000 tons a year of attapulgite are mined. The remainder is produced in Spain, France, and Turkey.

The main uses for attapulgite and sepiolite are listed in table 1. Adsorption granulates constitute the majority of attapulgite and sepiolite products. In the

Accepted 21 July 1986
Table I Uses of attapulgite and sepiolite

| Thickener and thixotropic substances: |
| Paints, adhesives |
| Stabiliser in liquids: |
| Suspension, fertiliser |
| Probe washing for oil drilling |
| Asbestos substitute: |
| Plaster filler, joint filler, underseal, sealants, brake linings |
| Sorption substances: |
| Old oil recycling, purification of hydrocarbons |
| Bases: |
| Pesticides |
| Catalysts |
| Liquid adsorption: |
| Oil, animal urine |
| Soil amelioration substances: |
| Horticulture in the United States |

United States alone, where about 700,000 tons a year of attapulgite are used, more than two thirds is found in oil and grease adsorbents, as carriers for pesticides, and as pet litter.

By comparison, in the Federal Republic of Germany the annual use of mineral adsorption granulates is estimated at more than one million tons. For animal litter alone, an annual production quantity of 145,000 tons a year mainly of sepiolite and attapulgite is reported (W Lohrer, personal communication 1984).

Biological effect

Because of its fibrous nature, samples of attapulgite were used in earlier animal experiments by the research teams of Stanton et al9 and Pott and Huth4 investigating the relation between carcinogenicity and fibre length. Although the intrapleural application of 40 mg short fibrous United States attapulgite per rat did not lead to an increased incidence of mesothelioma, mesotheliomas could be generated in 65% of rats after the intraperitoneal injection of 75 mg of a long fibrous palygorskite. Additional positive findings have been obtained by Wagner2 with long fibrous Spanish attapulgite from Torrejon. Some cell tests39 50 found a strong haemolytic and cytotoxic effect in the case of short fibrous attapulgite specimens. Using Stanton's precisely measured original dust samples, Lipkin showed no cytotoxic effect for short fibrous United States attapulgite11 12 Additional experiments carried out on organ cultures of the hamster trachea,13 hamster alveolar cells, and human tumour cells9 also showed no in vitro effect of short fibred attapulgite.

Fig 1 Sepiolite fibre, length 33 µm and diameter of 0.1 µm in sample from a Finnish deposit. Much thinner fibres of diameters down to 0.01 µm are also visible.
Potential health risks from the use of fibrous mineral absorption granulates

Materials and methodology

TEST SAMPLES
We began our tests with four attapulgite samples from the United States (Georgia*), France (Mormoiron†), Spain (Lebrija), and France (de Caceras).

These samples had been used in an injection experiment to investigate the potential to generate peritoneal mesotheliomas in rats; however, a carcinogenic effect could not be established for the first three of these materials but only for the last (F Pott, unpublished data). Sepiolite samples were also available from Spain (Uiacaluaru) and Finland. No commercial mining is done at the Finnish deposit (A Tossavainen and K Korhonen, 21st International Congress on Occupational Health, Dublin, September 1984).

For comparison, electron microscopic analyses were made with UICC crocidolite, a long fibrous Spanish attapulgite (Torrejon), and with erionite from Oregon. The latter two samples were provided by Dr Wagner who had shown an oncogenic potential in an intrapleural test.2

SAMPLE PREPARATION
Up to 5 mg of the substance was made into a suspension in 50 ml distilled water by a 30 minute ultrasonic treatment. After a dilution of 1:10, up to 20 ml of this suspension was filtered through Nuclepore-filters (diameter 25 mm, pore-size 0.2 µm).

The filters for transmission electron microscopy were prepared by carbon coating and dissolving the filter material in a "Jaffewasher."

In the case of the attapulgite samples from Georgia, Mormoiron, and Lebrija three equal but independent preparations of each substance were analysed. Two preparations of the attapulgite from Torrejon, the erionite and the UICC crocidolite were analysed.

ANALYSIS BY STEM
Up to 431 fibres of any length per substance were counted under the STEM operation mode at a magnification of 29 000 x and their dimensions measured. Since the attapulgite and sepiolite samples are almost exclusively made up of extremely fine fibres of <5 µm length, the measured surface amounted to only about 1/1000 to 1/100 mm². As a result, the sensitivity decreased to 10⁶ to 10⁷ fibres/mg per fibre found.

A separate count under the transmission electron microscope operation mode (TEM) with a far greater sensitivity at a magnification of 10 000 x was made to search for fibres with a length of ≥5 µm and also for asbestos fibres. In doing this, 0.5 mm² or 50 fields of the transmission preparation, which had been transferred on a 400 mesh copper grid, were examined. Each fibre L ≥ 5 µm was analysed using energy dispersive x ray analysis and selected area electron diffraction.

Results

Fibre concentration measurements
Table 2 lists the calculated fibre concentrations based on the number of fibres per mg of material, the number of fibres per mg being related to the number of fibres per mg by the magnification used in the STEM work. The number of fibres of any length and the fibre dimensions are determined at a magnification of 29 000 x under the STEM operation mode. The analysis of the fibres L ≥ 5µm is made mainly at a magnification of 10 000 x in the TEM operation mode. The attapulgite from Torrejon and the erionite and the crocidolite were given ultrasonic treatment for a short time only.

<table>
<thead>
<tr>
<th>Fibre concentration</th>
<th>Fibre dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All L [F/mg]</td>
</tr>
<tr>
<td></td>
<td>No all L</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Attapulgite:</td>
<td></td>
</tr>
<tr>
<td>Georgia 1</td>
<td>424</td>
</tr>
<tr>
<td>Georgia 2</td>
<td>200</td>
</tr>
<tr>
<td>Mormoiron†</td>
<td>431</td>
</tr>
<tr>
<td>Lebrija</td>
<td>420</td>
</tr>
<tr>
<td>Torrejon</td>
<td>200</td>
</tr>
<tr>
<td>Caceras</td>
<td>201</td>
</tr>
<tr>
<td>Sepiolite:</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>100</td>
</tr>
<tr>
<td>Finland†</td>
<td>100</td>
</tr>
<tr>
<td>Erionite:</td>
<td></td>
</tr>
<tr>
<td>Oregon</td>
<td>200</td>
</tr>
<tr>
<td>UICC crocidolite</td>
<td>120</td>
</tr>
</tbody>
</table>

*TEM operation mode at a magnification of 10 000 x.
†Contains amphibole fibres (classified as anthophyllite).
§Pott, unpublished data.
on both the STEM (all lengths) and TEM (lengths $\geq 5 \mu m$) analyses and gives the median dimensions of fibres actually measured for all attapulgite and sepiolite specimens, as well as the Oregon erionite studied by Wagner and UICC crocidolite. The results of experimental carcinogenicity testing are also given. The American attapulgite, and the Spanish and Finnish sepiolite, showed the highest overall concentration of individual fibres when fibres of any length were examined (10^{10} to 10^{11} fibres/mg). For the attapulgite, erionite, and crocidolite samples which had proved to be carcinogenic in animal experiments, the concentrations of fibres of any lengths were significantly lower (10^4 to 10^{10} fibres/mg). The concentrations of long fibres (lengths $\geq 5 \mu m$) for these four carcinogenic fibre samples and for the two sepiolite samples amounted to 64 to 5500 \times 10^6 fibres/mg. By contrast, as is seen in fig 2 and table 3 the non-carcinogenic attapulgite samples had few fibres longer than 5 μm. Between three and eight fibres longer than 5 μm observed for these samples resulted in a fibre concentration calculated to be 0-06 to 0-6 \times 10^6 fibres/mg longer than 5 μm. Of these longer fibres, between 0 and 5 were found to be chrysotile, compared with one fibre of chrysotile observed on average in the filter and distilled water materials used in this study.

Analysis of Fibre Dimensions

The median values of the fibre dimensions measured at a magnification of 29 000 \times are listed in table 2. It is remarkable that the erionite and crocidolite fibres have a greater diameter than the attapulgite and sepiolite. On the other hand, the attapulgite from Torrejon and the erionite and sepiolite from Spain and Finland are distinctly longer than the three short fibrous attapulgite samples. Figure 3 gives a comparison of the three dimensional length and diameter distribution of four of the attapulgite samples and the four sepiolite, erionite, and crocidolite samples examined.

Discussion

Evaluation of the Method

(1) Hand shaken suspensions of attapulgite and sepiolite samples contain both particle like fibre flocks, which are not countable as fibres, and thicker clusters of fibres. It was easier partially to disperse these flocks and clusters into thin fibres with a diameter of 0-01 μm for attapulgite than it was to do so with sepiolite using weak ultrasonic treatment. A complete dispersion with the same result was accomplished, this time using strong ultrasonic treatment. After an injection of hand shaken samples into rats, and subsequent analysis of the lung ash, very thin fibres without any clusters were seen. Thus strong ultrasonic treatment is considered a suitable method of preparation. This does not apply to the attapulgite from Torrejon; as described above, it was treated

![Fig 2](http://oem.bmj.com/) Fibres with $L \geq 5 \mu m$ in short fibrous attapulgite samples. Left: Attapulgite fibre, length 6-7 μm, in sample from Georgia. Photograph taken in STEM operation mode, magnification 15 000 \times. Right: Clusters of chrysotile fibres length 12 μm in attapulgite sample from Mormoiron. Photograph taken in STEM operation mode, magnification 6 300 \times.

Rödelsperger, Brückel, Manke, Woitowitz, Pott
ultrasonically for a short time and had completely dispersed into very fine fibres.

(2) No noteworthy deviations in the dimensions and concentrations of different preparations from any one mineral sample were observed, according to the Kolmogoroff-Smirnov test on the 95% level, and to the 95% confidence interval of the Poisson distribution.

Table 3

Concentration of the attapulgite and chrysotile fibres with $L \geq 5$ μm found in the attapulgite samples examined. All fibres were identified as attapulgite or chrysotile. (Upper limit of the 95% interval of reliability according to Poisson statistics in parentheses)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Attapulgite $L > 5$ μm [F/mg] $\times 10^6$</th>
<th>Chrysotile $L > 5$ μm [F/mg] $\times 10^6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Georgia 1</td>
<td>0.41 (< 1.50)</td>
<td>0.20 (< 1.10)</td>
</tr>
<tr>
<td>Georgia 2</td>
<td>0.41 (< 0.96)</td>
<td>0 (< 0.30)</td>
</tr>
<tr>
<td>Mormoiron</td>
<td>0.03 (< 0.07)</td>
<td>0.03 (< 0.07)</td>
</tr>
<tr>
<td>Lebrija</td>
<td>0 (< 0.25)</td>
<td>0.34 (< 0.79)</td>
</tr>
<tr>
<td>Torrejon*</td>
<td>99 (< 12500)</td>
<td>No analysis made</td>
</tr>
<tr>
<td>Caceres</td>
<td>240 (< 32000)</td>
<td>No analysis made</td>
</tr>
</tbody>
</table>

*Preparation with short term ultrasonic treatment.

Fig 3

Comparison of three dimensional length and diameter distribution of four attapulgite samples and four sepiolite, erionite, and crocidolite samples of different origin. Standardisation is made according to highest column which contains 19% to 60% of all fibres.
The length and diameter distributions of short and long fibred attapulgite, sepiolite, and erionite samples examined here may also be compared with the individual results of measurements by other authors.2,14,15 This comparison shows a close conformity, especially relative to the order of magnitude of the difference between the short and long fibred samples. Nevertheless, the median length and width dimensions reported by Zumwalde for Georgian attapulgite, 0.4 μm and 0.07 μm respectively, were somewhat shorter than those reported here.15

(3) The comparisons of the different samples 1 and 2 from deposits in Georgia may be regarded as an example of the reproducibility of the concentration measurements. Fibre concentrations of all lengths differ by 29 and 72 × 106 fibres/mg, by the factor 2.4. The findings L ≥ 5 μm based on a smaller number of fibres are virtually identical. This difference—observed despite comparable fibre lengths and diameters—is caused by differing proportions of non-fibrous contamination. According to the data in table 2, there is a close conformity between the attapulgite from Torrejon and a sample prepared by Hill and Griffith14 with intensive ultrasonic treatment.

In the sample of Hill and Griffith the concentration was 15.6 × 109 fibres/mg for all lengths and 85 × 106 fibres/mg L ≥ 5 μm by comparison with 9.6 × 106 and 99 × 106 fibres/mg in the data shown in table 2.

(4) From tables 2 and 3 it may be seen that the concentration of chrysotile and attapulgite fibres with a L ≥ 5 μm—in the case of short fibred attapulgite samples—is at least lower a factor of 100 than the long fibred attapulgite and UICC crocidolite. It exceeds the asbestos fibre concentrations L ≥ 5 μm found in tale samples by at least a factor of 10 when similar analyses were conducted.16 However, up to five chrysotile fibres with a L ≥ 5 μm observed per 50 counting fields has to be considered to lie within the range of the detection limit determined by blind samples. This is calculated from the 95% confidence interval of Poisson statistics. For two fibres found per 100 counting fields, 3-6 fibres per 50 counting fields are estimated. Therefore, the observance of three or five fibres longer than 5 μm for the attapulgite samples is not statistically significant.

BIOLOGICAL ASSESSMENT

Of the five attapulgite samples examined, four were definitely of the short fibrous type, whereas one sample (Torrejon) proved to be distinctly longer and was thus similar to the two sepiolite samples, the erionite and the crocidolite (see table 1). If one compares the distribution of the fibre dimensions with the carcinogenic effect of these dusts in most cases it will be found that the short fibrous dusts have not proved as carcinogenic as the long fibrous ones. The Spanish sepiolite is one exception because, on the one hand it is a relatively long fibrous type and on the other it did not induce tumours.2 The two explanations for this are (1) the sample of sepiolite used by Wagner’s carcinogenicity test differed essentially from the sample which we examined, although the origin—so far as could be verified—was the same and (2) although the Spanish sepiolite has a larger proportion of longer fibres, so that carcinogenic effect is to be expected3,4 its firmness may be too low for the existing carcinogenic agent to take effect.

Obviously specimens classified as attapulgite from a mineralogical viewpoint may differ greatly with regard to their carcinogenic potential. At present, one cannot judge whether only fibre length, which proved to be greater in the carcinogenic samples,1,2 is decisive or whether a lower firmness was also important for the lack of a carcinogenic effect in the short fibrous samples.3

The surveys on carcinogenicity available to date were made using extremely sensitive tests—either the intrapleural test2 or the intraperitoneal (F Pott, unpublished data) in the rat. An important question, “To what extent are the samples examined representative of the entire deposit?” is difficult to answer.

Furthermore, it is important to note that the negative result from the carcinogenicity test with attapulgite (sample Georgia 1) (F Pott, unpublished data) cannot be predicted from the strong cytoxicity and the haemolytic activity that was found in vitro in the case of an attapulgite sample of a similar type (sample Georgia 2).16 The attapulgite samples “Georgia 1” and “Georgia 2” are virtually identical in the distributions of fibre dimensions (table 2) and in their infrared spectra. The different reactions in a carcinogenicity test, by comparison with an in vitro test, show that positive findings from short term tests may be misinterpreted with respect to carcinogenic potential. Carcinogenicity tests with fibrous dusts on laboratory animals cannot, as yet, be replaced by in vitro tests. Based on their findings, Wagner et al have warned against drawing conclusions from in vitro tests without taking in vivo mechanisms also into consideration.17

Our special thanks to Dr Wagner, Dr Tossavainen, and Dr Dunnigan for providing samples and to Dr Dunnigan for making the infrared spectra of both attapulgite samples from Georgia.

Supported by the German Federal Ministry for Science and Technology, Bonn, Project-No 01 VD 2900.
Potential health risks from the use of fibrous mineral absorption granulates

References

Vancouver style

All manuscripts submitted to the Br J Ind Med should conform to the uniform requirements for manuscripts submitted to biomedical journals (known as the Vancouver style).

The Br J Ind Med, together with many other international biomedical journals, has agreed to accept articles prepared in accordance with the Vancouver style. The style (described in full in Br Med J, 24 February 1979, p 532) is intended to standardise requirements for authors.

References should be numbered consecutively in the order in which they are first mentioned in the text by Arabic numerals above the line on each occasion the reference is cited (Manson1 confirmed other reports2–5). In future references to papers submitted to the Br J Ind Med should include: the names of all authors if there are six or less or, if there are more, the first three followed by et al; the title of journal articles or book chapters; the titles of journals abbreviated according to the style of Index Medicus; and the first and final page numbers of the article or chapter.

Examples of common forms of references are:

Potential health risks from the use of fibrous mineral absorption granulates.
K Rödelsperger, B Brückel, J Manke, H J Woitowitz and F Pott

Br J Ind Med 1987 44: 337-343
doi: 10.1136/oem.44.5.337

Updated information and services can be found at:
http://oem.bmj.com/content/44/5/337

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/