Correspondence

each subject. It enabled the subjects’ heart rate in the final load to be brought within two to five beats of 80% of \(\dot{V}_O_2 \) max for age, a level which in our view conformed with recommended maxima for exercise testing (ref 18) but also was high enough to ensure the minimum extrapolation for estimation of \(\dot{V}_O_2 \) max.

Cotes rightly draws attention to the imperfection of weight related \(\dot{V}_O_2 \) max as a fitness indicator. Our main reason for using \(\dot{V}_O_2 \) max per kg was its near universal use in other studies (such as those in table 5). In interpreting Van der Walt and Wyndham’s prediction of the energy cost of walking and running we have used their formulas for an individual weighing 76 kg, the mean weight for our population, recognising that there is not a direct proportionality.

We would prefer to use a more sensitive index when we come to the stage of reporting on morbidity in relation to fitness but it is not clear what that index should be. The gross value of \(\dot{V}_O_2 \) max would appear to be much less meaningful, and relating \(\dot{V}_O_2 \) to lean body mass or other body dimensions also can be less than helpful in clarifying the relation between \(\dot{V}_O_2 \) and relative functional capacity. Other indices such as W150—used by some authors across entire age ranges—seem to give no helpful basis for comparison.

We would welcome suggestions from other readers and in the meantime will certainly consider that of Cotes—but what are the “truly independent variables?”

The \(2 \times 2 \) histograms were not used in any analytical process but only to present mean results for different categories of one dimension in relation to another dimension. We acknowledge that individuals may poorly estimate their participation in activity. Such large numbers cannot be individually monitored—even if they could this would then affect their behaviour. We did, however, attempt to make the questionnaire as dependable as possible by carefully piloting it and using trained interviewers.

We hope that some interest will have been aroused by the paper despite the imperfections of our measures and procedures, most of which arose from compromises which have to be made in field work between ideality and practicality.

References

Lung function in coalworkers’ pneumoconiosis

SIR,—In a recent report (1986;43:644–5) Zhicheng considers the issue of lung function in coal workers’ pneumoconiosis. Although this is an important topic, the study design used in this report limits the inferences which may be drawn from the data, particularly with regard to the aetiology of the deficits in pulmonary function.

I think that the most serious flaw in this study is the lack of quantitative information regarding smoking history—for example, in pack-years—in the four groups. Cigarette smoking is associated with both restrictive and obstructive lung defects and
Benzene exposure in chemical workers.

E S Johnson

doi: 10.1136/oem.44.3.215

Updated information and services can be found at:
http://oem.bmj.com/content/44/3/215.1.citation

Email alerting service

These include:

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/