Occurrence of lung cancer in workers producing chromium pigments

S LANGÅRD1 AND T VIGANDER2

From the Department of Occupational Medicine,1 Telemark Sentralsjukehus, 3900 Porsgrunn, and the Department of Pulmonary Diseases,2 Bergen University, 5016 Haukeland Sykehus, Norway

ABSTRACT The results of a follow-up study on the incidence of lung cancer in 133 workers producing zinc chromate pigments are presented. By the end of 1972 three cases of lung cancer had occurred in a sub-cohort of 24 workers who had been employed for over three years. The same group of workers has now been followed up to December 1980 and three further cases of lung cancer were found. The observed/expected ratio was 44 in this group, virtually the same as at the end of 1972. Five of the six patients smoked. Only one had been exposed to chromates other than zinc chromates.

For 50 years chromates have been known to be potent inducers of cancer in exposed workers, while about 90 years ago one case of adenocarcinoma of the nose was reported by Newman in a worker who had previously been exposed to chrome pigments. Gross and Kölsch reported eight cases of bronchial cancer in chromium pigment workers, indicating that chromium pigments were carcinogenic in man. Until 1975 no epidemiological studies had been carried out on the suggested association between exposure to chromium pigment and lung cancer. A study reported in that year was initiated by the occurrence of bronchial carcinoma in a 41-year-old man in the city of Bergen in 1972 who appeared to have worked in a chromium pigment producing plant. The present study is a follow-up of the study presented in 1975.

In the previous investigation the study population was followed up from 1948, when chromium pigment production was started, to December 1972. Three cases of lung cancer were observed in those 24 of the total number of 133 workers who had by the end of 1972 worked in the plant for over three years. Three years later the same population was followed up. No new cases of lung cancer were observed, but there was a slight excess of cancer in the gastrointestinal tract in the same 24 workers.

The initial study has been criticised partly because of the small study population and the small number of observed cases of cancer. There is no doubt that this criticism would have been valid if firm conclusions had been drawn from that small study but no such conclusions were suggested in the study. Several studies, however, have been carried out since 1975 in workers producing chromium pigments (unpublished report of the Equitable Environmental Health Inc for the Dry Color Manufacturers’ Association, USA, 1976) and also in users of chromium pigment-containing paints. Although the excess of cancer found in these studies was smaller than in our study they have all shown an excess of lung cancer in the workers.

These studies have also raised a new question: whether all classes of chromium pigments are capable of inducing cancer or if one of the pigments should be considered a more potent carcinogen than the others. Animal experiments have indicated that lead chromate, in addition to zinc chromate, should be considered carcinogenic.

Cancer in the respiratory organs has been in focus in most studies with relation to exposure to chromates. The prime purpose of the present study was to reconsider the incidence of lung cancer in the population studied previously.

The production process in the plant has been altered considerably since the initial study was carried out. No lead chromate has been produced since 1956. The dust concentration has been reduced since 1973, partly because those production units with the poorest hygienic standards were closed in 1974 and 1980 respectively, and only the most satisfactory plant (the unit called plant C) has remained in production. The level of zinc chromate dust in this plant has been monitored at regular intervals, and few measurements have exceeded 50 μg Cr/m³. Most of the routine measurements during the period

Received 30 November 1981
Accepted 27 January 1982
1975–80 show dust concentrations with Cr-
concentrations between 10 and 30 μg Cr/m³.

Methods

To make the present follow-up study comparable
with the previous study the same method has been
applied for determining the expected and observed
number of cases of cancer. The same list of all 133
male workers who had been employed between
1948 and December 1972 was used. The list was
provided by the company in 1973. Several workers
started work after 1973. Assuming a development
time (latent period) of 10 to 15 years for workers
exposed to chromium pigment to develop cancer,
none of these recently employed workers has yet
had the chance to develop cancer induced by expo-
sure to chromium pigments. As the level of exposure
has also been considerably reduced since 1972 the
recently employed workers should also be excluded
for this reason.

Twenty-four of the 133 workers had been em-
ployed in pigment production for more than three
years before January 1973.

The expected chance (risk) of developing cancer
in the respiratory organs in the members of this
small sub-cohort was calculated by using the age-
adjusted incidence rates for lung cancer in the whole
Norwegian male population for the period 1955–76,
as presented by the Norwegian Cancer Registry.16 17
The chance of developing cancer was calculated
from the beginning of the fourth year after first day
of employment to the end of the year of death, or to
the end of the year bronchial carcinoma was diag-
nosed, whichever was the earliest. Similarly, when
using five years’ employment as the requirement for
admission to the study population, the chance of
developing lung cancer was calculated from the
beginning of the sixth year of employment. Since
the data from the Cancer Registry do not include
the cancer incidence figures for the years 1951–4, the
incidence figures for 1955 were used for these years.
The cohort was observed to the end of 1980. Since
the incidence figures have not yet been extended
beyond 1976,17 the mean incidence figures for the
years 1974–6 were used for the period 1977–80.

As all new cases of cancer in Norway are reported
and stored on magnetic tapes in the cancer registry,
the registry was able to provide all cases of cancer
that have occurred in the cohort from 1953 to 1980,
when linking the names in the cohort with the
records in the cancer registry.

Results

By the end of 1980 the following cancers had occur-
red among the 133 workers—lung (7), pancreas (1),
stomach (1), large intestine (2), prostate (1), and
nasal cavity (1). Four new cases of lung cancer had
occurred since the initial study was carried out.
Apart from these cases, one new case of cancer at
other sites had developed since the end of 1975.6
Three of the four new cases of lung cancer were
recruited from the sub-cohort of 24 workers who
had been employed for more than three years before
1973 (table 1).

The expected number of cases of lung cancer in
this sub-cohort, based on the national figures, was
calculated to be 0·135, while the observed number
of cases was 6. This gives an O/E ratio of 44 (table
1). The total number of man-years-at-risk in this
sub-cohort was 391.

When re-evaluating the list of workers it appeared
that four workers had worked for over five years
before 1972 in addition to the 14 indicated in the
previous study.4 There were still only 18 included
in this group. The expected figure for lung cancer
was 0·10. Twelve of these 18 are still alive. One (case 6)
has lung cancer, and one died of other causes in
1973 aged 68.

One case of cancer of the rectum was diagnosed in
1980 in a man born in 1910 who had been employed
by the company for nine months in 1957.

Details of the six cases of lung cancer in the sub-
group of 24 workers are summarised in table 2.

Table 1 Exposure characteristics of the cohort

<table>
<thead>
<tr>
<th>No of workers</th>
<th>No of lung cancers</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>133</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>> 3 years’ exposure</td>
<td>24</td>
<td>6</td>
</tr>
<tr>
<td>> 5 years’ exposure</td>
<td>18</td>
<td>6</td>
</tr>
</tbody>
</table>

*E = 0·08 when using local reference population.
0·09 when correcting for 10 years’ latent period.

CASE REPORTS OF BRONCHIAL CARCINOMA

Case 4—Man born 1907. He was employed by
the company from September 1954 until he retired
in 1974. From 1920 to 1954 he had been doing
farmwork in the summer season and had been a
fisherman during the winter season. During the 20
years that he was employed by the company he had
been at plant A. Sack filling was the most dusty work
in this plant. He had been exposed to no chromates
other than zinc chromate dust. He had smoked
about 10 cigarettes a day from about the age of 16
until 1971. A highly differentiated epithelial car-
cinoma in the left main bronchus was diagnosed in

*Cases 1–3 are reported in the previous publication.
April 1978. He died in July 1979. At a medical examination in 1973 (by SL) a perforation of his nasal septum was found, of which a photograph has been presented elsewhere.18

Case 5—Man born November 1930. Employed by the company from October 1961 to January 1969, when he had to stop working due to asthma which he had acquired during his employment as a sack filler at plant A. From 1944 to 1956 he was employed mainly in the silver trade, doing different types of work. From 1956 to 1961 he worked at a stamping-machine in an engine-producing factory. This worker had also been exposed to zinc chromate dust at the study plant. He had smoked five to 10 cigarettes a day from about 1948 until a highly differentiated epithelial carcinoma in the left upper lobe was diagnosed in January 1979. He died in July 1979.

Case 6—Man born March 1918. Employed by the company since May 1954, the first 12 years at plant A, from 1966 to 1973 at plant B, and the last six to seven years at plant C. He was a trusted worker doing all types of production work, the last years as foreman. He was engaged in zinc chromate production only, except for sporadic contact with calcium chromate. From 1933 until 1954 he had been a construction worker, and exposure to asbestos during this period cannot be excluded. He had been a pipe smoker from 1945 until he became ill in 1980, smoking 75–100 g of tobacco a week. Since 1973 this worker had been included in the health screening programme of the company. In March 1980 a 2-5 cm diameter round shadow was seen adjacent to the right upper bronchial branch. Biopsy of the tumour was not successful, but a biopsy specimen from the enlarged liver indicated the presence of a poorly differentiated adenocarcinoma. Since no other origin of the tumour could be found, it was assumed that the tumour originated from the lung. The patient has not been operated on and was still alive in August 1981.

Discussion

The results presented in the present follow-up study confirm the findings in the original investigation, which indicated an association between exposure to zinc chromate and the development of bronchial cancer. The present results strengthen the findings in the initial study and indicate that the cohort method can be used when studying the incidence of cancer even on small populations, provided the chance of developing cancer is high. Discrimination between the high and low risk groups within the population at risk is also necessary when using this method on small populations at risk.

Except for one case, all the new cases of lung cancer had developed within the sub-population that was considered to be at highest risk in 1973. Of the seven of the group of 18 who were ill, six had lung cancer; the remaining 11 are healthy.

The O/E ratio for lung cancer has remained virtually constant since 1972. In the present study the chance of lung cancer developing in those workers who have started work since 1972 has not been included in the calculation of expected risk. Had that been done, the expected figures would have been slightly higher. The assumed latent period for developing cancer has been included in the calculation of expected risk. When the latent period was assumed to be 10 years, and this latent period was excluded from the calculation of the expected figure, this figure was much lower (table 1).

The regional incidence of lung cancer was also used as a reference entity, this being lower than the incidence for the whole country19 (table 1).

The mean age at the time of diagnosis was 55-5 years in the six cases of lung cancer in the sub-population. This is 8–10 years lower than in the general male population.15 16 Except for case 1,4 all workers who have developed cancer have been exposed to zinc chromates and only sporadically to other chromates. Therefore the results presented here may serve only as documentation for considering the carcinogenicity of zinc chromate.

Five of the six patients with cancer are known to be smokers or ex-smokers. Since the present findings are very extreme, however, smoking should not be considered as an important confounder.20 Also, the present figures are too small in number to draw conclusions on possible interaction between smoking and chromium pigments.
We thank the Cancer Registry of Norway for its co-operation and for valuable discussion with Mr Aa Andersen. We thank Mrs U Danielsen for preparing the manuscript and Mrs P A Flor for linguistic help.

References

7 Kreyberg L. Lungekreft for arbeidere i kromindustrien. Tidsskr Nor Lægeforen 1976;96:50-1.
Occurrence of lung cancer in workers producing chromium pigments.

S Langård and T Vigander

doi: 10.1136/oem.40.1.71

Updated information and services can be found at:
http://oem.bmj.com/content/40/1/71

Email alerting service

These include:

Receive free email alerts when new articles cite this article.
Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/