Observations on the lungs of vanadium workers

M KIVILUOTO

From the Health Center of the Otanmäki Mine of Rautaruukki Company, SF-88200 Otanmäki, Finland

ABSTRACT Out of a total of 79 employees at a factory making vanadium pentoxide from magnetite ore 63 were investigated by respiratory questionnaire, chest radiography, and tests of ventilatory function. The findings were compared with a reference group of 63 men, matched for age (to within two years) and for smoking habit (to within five cigarettes daily) selected from workers at a magnetite ore mine. Analysis of the ventilation tests showed no significant differences between the reference group and the men exposed to low concentrations of vanadium (0.01-0.04 mg/m³), despite previous exposure for an average of 11 years to concentrations in the range of 0.1 to 3.9 mg/m³. Complaint of wheezing was significantly more common among the workers exposed to vanadium than among their referents, but there were no other subjective differences between the groups. Localised fibrotic foci were reported in the radiographs of four reference cases and two men exposed to vanadium, but there were no cases of pneumoconiosis in either group.

The world production of vanadium was about 35,000 tons in 1975. The largest producers were South Africa, the United States, the Soviet Union, Finland, Namibia, Norway, and Chile. Vanadium is commonly separated from carnotite and titanomagnetite ores. It is used in the steel industry as an alloy substance to improve the properties of steel, as well as in the chemical industry as a catalyst. Exposure to vanadium is possible during the different stages of its separation, in the steel industry, and in certain branches of the chemical industry. It may also occur when oil- or gas-fired boilers are being cleaned or repaired as some oils contain vanadium.

Vanadium enters the body mainly through the lungs, and is excreted in the urine and also, to a minor degree, in the faeces. The metabolic effects of vanadium are probably due to its oxidising capacity. The symptoms of vanadium poisoning are: irritation of the upper respiratory tract, nasal catarrh and haemorrhage, stinging pain in the throat, cough, and wheezing. Chronic rhinitis, bronchitis, and conjunctivitis have been reported after prolonged exposure. Exposure to vanadium may also result in pneumonia, but permanent damage to the lungs or carcinogenic effects have not been reported.

The present investigation was undertaken in the vanadium factory of the Otanmäki Mine of Rautaruukki Company, Finland, which has been manufacturing vanadium pentoxide since 1956. The annual output is up to 2400 tons. In the process magnetite is roasted with sodium carbonate. The roasted product is leached, and vanadates are precipitated from the leach liquor. The “red cake” produced is filtered, washed, and smelted to vanadium pentoxide. Control of vanadium dust has been difficult at the smelting furnaces and during the packing of pentoxide smelt, processing the filtered precipitate, and grinding the laboratory samples.

Table 1 shows the concentrations of vanadium dust in the factory before this study. They have been determined from the total amount of dust collected during 1-3 hours. In the dustiest areas the concentration of vanadium in the air exceeded or equalled the threshold limit value (TLV) recommended by the American Conference of Governmental Industrial Hygienists.

This case-control study examines the possible effects of vanadium exposure on ventilatory function, findings in chest radiographs, and respiratory symptoms in the workers of the vanadium factory.

Population and methods

The exposed population consisted of 63 men, who were process workers, repairmen, foremen, and laboratory workers in the vanadium factory. Every man who had worked in the vanadium factory for at least four months was selected for examination, but those on holiday or sick leave at that time were not seen. The reference group of 63 men was chosen
The differences Cole's finding of a sampler. The volume which samples, simplified the analysis of the particle size at 0.002 mg/m³. This could detect 6% variations. This was in the limit for five cigarettes. The coefficient of variation within-run was 0.05 mg/m³. The particle size of the dust samples was determined by a modified Andreasen method from five dust samples, which were taken separately with a high volume sampler.

Because the exposed and reference populations were matched for age and smoking habit, the use of Cole's finding that FEV₁ = height² × (c + d × age) simplified the analysis to a paired t-test of the differences

$$\frac{\text{FEV}_1}{\text{Height}^2} \text{ (exposed)} - \frac{\text{FEV}_1}{\text{Height}^2} \text{ (referent)}$$

The distribution of respiratory symptoms between the exposed and referents was analysed by McNemar's test for paired observations.

Results

Comparability of the Exposed and the Reference Group

The average smoking time of the smokers within the exposed group was 15.8 years and that of the smokers within the reference group 16.0 years. The average amounts in grams of tobacco smoked were 14 g and 12.5 g a day respectively.

In the age group 19-39 the average height of the exposed group was 170.8 cm and the height of the referents 175.6; in the age group 40-56 the average heights were 170.0 cm and 171.7 cm, respectively. For the whole sample, the height of the smokers was significantly greater ($p < 0.01$) (table 2), but there was no difference in the weights of the two groups (table 3).

Table 2 Height of the subjects (cm)

<table>
<thead>
<tr>
<th></th>
<th>Exposed group</th>
<th>Reference group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>170.4*</td>
<td>173.8*</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>5.9</td>
<td>6.1</td>
</tr>
<tr>
<td>No of subjects</td>
<td>63</td>
<td>63</td>
</tr>
</tbody>
</table>

* $p < 0.01$.

Table 3 Weight of the subjects (kg)

<table>
<thead>
<tr>
<th></th>
<th>Exposed group</th>
<th>Reference group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>76.9*</td>
<td>77.5*</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>10.1</td>
<td>10.0</td>
</tr>
<tr>
<td>No of subjects</td>
<td>63</td>
<td>63</td>
</tr>
</tbody>
</table>

* $p > 0.1$.

Dust Concentrations

The concentration of vanadium in the air (table 4) was lower at the time of this survey than in the previous analyses (table 1). The respirable fraction of the dust was calculated from high volume samplers using a dry, insensitive method. The concentration was determined with a flameless graphite furnace and for the number of days and for the number of cigarettes smoked daily within five cigarettes. All the subjects consented to the examination.

Forced vital capacity (FVC) and forced expiratory volume (FEV₁) were determined with a dry bellows spirometer (Vitalograph) and expressed at BTPS. The highest value out of five attempts was used. Investigation of the exposed men took place at the end of their summer holidays in 1975, and at the same time the assisting nurse filled in a standardised questionnaire on respiratory symptoms. Lung function tests of the reference group were also undertaken in summer 1975. Full-size chest radiographs were taken in April 1976 and read, mixed and “blind,” by an experienced radiologist at the Institute of Occupational Health of Finland.

The concentrations of vanadium dust at various sites in the factory were determined on eight days in March-May 1976. The determination covered two whole shifts. An atomic absorption spectrophotometer using the flameless graphite atomiser (Perkin-Elmer 300, HGA 74) was used for these determinations. This could detect vanadium down to 0.002 mg/m³. The coefficient of variation within-run was 6% at the concentration level of 0.05 mg/m³. The particle size of the dust samples was determined by a modified Andreasen method from five dust samples, which were taken separately with a high volume sampler.

Because the exposed and reference populations were matched for age and smoking habit, the use of Cole's finding that FEV₁ = height² × (c + d × age) simplified the analysis to a paired t-test of the differences

$$\frac{\text{FEV}_1}{\text{Height}^2} \text{ (exposed)} - \frac{\text{FEV}_1}{\text{Height}^2} \text{ (referent)}$$

The distribution of respiratory symptoms between the exposed and referents was analysed by McNemar's test for paired observations.

Results

Comparability of the Exposed and the Reference Group

The average smoking time of the smokers within the exposed group was 15.8 years and that of the smokers within the reference group 16.0 years. The average amounts in grams of tobacco smoked were 14 g and 12.5 g a day respectively.

In the age group 19-39 the average height of the exposed group was 170.8 cm and the height of the referents 175.6; in the age group 40-56 the average heights were 170.0 cm and 171.7 cm, respectively. For the whole sample, the height of the smokers was significantly greater ($p < 0.01$) (table 2), but there was no difference in the weights of the two groups (table 3).

Table 2 Height of the subjects (cm)

<table>
<thead>
<tr>
<th></th>
<th>Exposed group</th>
<th>Reference group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>170.4*</td>
<td>173.8*</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>5.9</td>
<td>6.1</td>
</tr>
<tr>
<td>No of subjects</td>
<td>63</td>
<td>63</td>
</tr>
</tbody>
</table>

* $p < 0.01$.

Table 3 Weight of the subjects (kg)

<table>
<thead>
<tr>
<th></th>
<th>Exposed group</th>
<th>Reference group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>76.9*</td>
<td>77.5*</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>10.1</td>
<td>10.0</td>
</tr>
<tr>
<td>No of subjects</td>
<td>63</td>
<td>63</td>
</tr>
</tbody>
</table>

* $p > 0.1$.

Dust Concentrations

The concentration of vanadium in the air (table 4) was lower at the time of this survey than in the previous analyses (table 1). The respirable fraction of the dust was calculated from high volume samplers using a dry, insensitive method. The concentration was determined with a flameless graphite furnace and for the number of cigarettes smoked daily within five cigarettes. All the subjects consented to the examination.

Forced vital capacity (FVC) and forced expiratory volume (FEV₁) were determined with a dry bellows spirometer (Vitalograph) and expressed at BTPS. The highest value out of five attempts was used. Investigation of the exposed men took place at the end of their summer holidays in 1975, and at the same time the assisting nurse filled in a standardised questionnaire on respiratory symptoms. Lung function tests of the reference group were also undertaken in summer 1975. Full-size chest radiographs were taken in April 1976 and read, mixed and “blind,” by an experienced radiologist at the Institute of Occupational Health of Finland.

The concentrations of vanadium dust at various sites in the factory were determined on eight days in March-May 1976. The determination covered two whole shifts. An atomic absorption spectrophotometer using the flameless graphite atomiser (Perkin-Elmer 300, HGA 74) was used for these determinations. This could detect vanadium down to 0.002 mg/m³. The coefficient of variation within-run was 6% at the concentration level of 0.05 mg/m³. The particle size of the dust samples was determined by a modified Andreasen method from five dust samples, which were taken separately with a high volume sampler.

Because the exposed and reference populations were matched for age and smoking habit, the use of Cole's finding that FEV₁ = height² × (c + d × age) simplified the analysis to a paired t-test of the differences

$$\frac{\text{FEV}_1}{\text{Height}^2} \text{ (exposed)} - \frac{\text{FEV}_1}{\text{Height}^2} \text{ (referent)}$$

The distribution of respiratory symptoms between the exposed and referents was analysed by McNemar's test for paired observations.
Observations on the lungs of vanadium workers

Table 4 Total vanadium concentrations in the air (mg/m³)

<table>
<thead>
<tr>
<th>Site or job</th>
<th>No of workers on sites</th>
<th>No of samples</th>
<th>Range</th>
<th>Time-weighted mean concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breathing zone samples covering whole shift</td>
<td>58</td>
<td>112</td>
<td>0.002-0.42</td>
<td>0.028</td>
</tr>
<tr>
<td>Breathing zone samples at grinding (1-h samples)</td>
<td>1</td>
<td>2</td>
<td>0.25-4.7</td>
<td>1.7</td>
</tr>
<tr>
<td>Stationary samples covering whole shift</td>
<td>15</td>
<td>80</td>
<td>0.002-0.043</td>
<td>0.012</td>
</tr>
<tr>
<td>Packing of smelt (1-h samples)</td>
<td>1</td>
<td>7</td>
<td>0.020-0.037</td>
<td>0.13</td>
</tr>
<tr>
<td>Grinding room</td>
<td>1</td>
<td>1</td>
<td>2.3</td>
<td>2.3</td>
</tr>
</tbody>
</table>

The in the air.

VENTILATORY FUNCTION

There were no significant differences between the ventilatory measurements of the exposed workers and those of their referents (t = 0.09, p > 0.1 for FEV₁ and t = 0.01, p > 0.1 for FVC, DF = 110). Regression analysis showed no significant correlation (p > 0.1) between FEV₁ and duration of exposure to vanadium dust.

CHEST RADIOGRAPHS

Two men of the exposed group and four men of the reference group had localised fibrotic foci. The remainder had essentially normal chest radiographs.

RESPIRATORY SYMPTOMS

The exposed men had significantly more wheezing than the referents (table 5). There were no significant differences, however, in the prevalence of nasal catarrh, cough, phlegm, or other respiratory symptoms.

Table 5 Occurrence of wheezing in the exposed and reference groups (63 pairs)*

<table>
<thead>
<tr>
<th>Reference group</th>
<th>Exposed group</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Never or sometimes</td>
<td>On most days or nights</td>
<td></td>
</tr>
<tr>
<td>Never or sometimes</td>
<td>30</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>On most days or nights</td>
<td>8</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

*Significantly (p < 0.05) more wheezing in the exposed group. x² = 6.5 (DF = 1).

Discussion

The present low concentrations of vanadium in the air were probably due to intensified flushing of the factory floors, started in 1976 to stop the dust rising in the air. No association was found between exposure to vanadium dust and alterations of either ventilatory function or chest radiographs in this case-control survey.

This investigation suggests that vanadium dust in low concentrations (0.01-0.04 mg/m³), or even in higher concentrations (0.2-0.5 mg/m³) endured for years (the average working period was about 11 years under these conditions), does not cause any significant changes in chest radiographs or lung-function tests. No cases of pneumoconiosis or cancer were found. The only symptom relating to exposure was wheezing, which occurred significantly more often in the workers exposed to vanadium. In view of the results of lung function tests the clinical significance of this finding is uncertain.

I thank Dr E Huhti for his advice, and Ms A Laatikainen, Ms A Tuura, Mr O Juutinen, Mr P Kiviluoto, and Mr J Saukkonen for their skillful help. I am indebted to Rautaruukki Company for the possibility of conducting this study. Without the cooperation of both the workers and the management this work would not have been possible.

References

10. Sjöberg S-G. Vanadium dust, chronic bronchitis and possible risk of emphysema: a follow-up investigation of...
Vancouver style

All manuscripts submitted to the *Br J Ind Med* should conform to the uniform requirements for manuscripts submitted to biomedical journals (known as the Vancouver style).

The *Br J Ind Med*, together with many other international biomedical journals, has agreed to accept articles prepared in accordance with the Vancouver style. The style (described in full in *Br Med J*, 24 February 1979, p 532) is intended to standardise requirements for authors.

References should be numbered consecutively in the order in which they are first mentioned in the text by Arabic numerals above the line on each occasion the reference is cited (Manson¹ confirmed other reports²⁻⁵,...). In future references to papers submitted to the *Br J Ind Med* should include: the names of all authors if there are six or less or, if there are more, the first three followed by *et al*; the title of journal articles or book chapters; the titles of journals abbreviated according to the style of *Index Medicus*; and the first and final page numbers of the article or chapter.

Examples of common forms of references are:

Observations on the lungs of vanadium workers.

M Kiviluoto

doi: 10.1136/oem.37.4.363

Updated information and services can be found at:
http://oem.bmj.com/content/37/4/363

Email alerting service

These include:

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/