The effect of body protein supply on resistance to cadmium

I. GONTZEA* AND FELICIA POPESCU

From the Nutritional Research Centre, Institute of Medicine and Pharmacy, Bucharest, Romania

ABSTRACT Six groups of 15 rats were fed on three diets, each differing in the quantity and quality of protein (17-87 as opposed to 8-85 g%, with or without the addition of 0.5 g methionine), one group of each pair of animals being injected subcutaneously with 0.3 mg Cd/kg body weight/day, for 13 weeks. The low protein diet increased the effects of cadmium, rendering them significantly more harmful than in animals which were given the normal protein diet. The incorporation of 0.5 g% DL-methionine in the low protein diet, without increasing the total nitrogen content, diminished the most marked effects induced by the same amounts of cadmium, so that their mean values were not significantly different from those found in the normal protein group treated with the same dose of the metal. The results show that a quantitatively and qualitatively adequate protein supply increases the resistance of the organism to cadmium, diminishing significantly the severity of symptoms induced by the metal.

The use of cadmium, both as the metal (for cadmium plating, in alloys containing several metals, and in cadmium-nickel accumulators) and as its salts (in dyes, stabilisers and fungicides) is becoming progressively more intensive and extensive. Its production has increased by 10% per year from 1968, when the world production was 14 000 tonnes (Rühimäki, 1972). All factories manufacturing or using this metal are potential sources not only of occupational exposure, but also of environmental pollution (Brouwers and Lauwerys, 1973). Apart from some ores, including blende (ZnS), the cadmium content of which may reach 4-5%, the cadmium content of the earth's crust is estimated to be 0.5-1.0 ppm, but within a distance of 1 km from a zinc plant, where cadmium is also produced, its concentration in the soil to a depth of 15 cm has been found to be 1750 ppm (Kloke, 1971; Buchauer, 1973; Lagerwerff et al., 1973).

In regions without industrial installations emitting cadmium, the amount does not exceed 0.001 μg/m³ in the air and 1 mg/litre in town water, whereas in areas where such industries exist, the cadmium concentration in air and water may be 10-20 times higher (Kopp and Kroner, 1970; Friberg et al., 1973; Page and Bingham, 1973). Raw foodstuffs may be contaminated not only through the soil, air and water, but also through the use of fertilisers (phosphates and superphosphates) or of cadmium-containing fungicides; nevertheless, their metal content is usually below 0.2 ppm, being higher in vegetable than in animal products (below 0.1 ppm) (Essing et al., 1969; Ishizaki et al., 1970; Friberg et al., 1973; Kloke, 1973; John, 1973; Thomas et al., 1973; UK Ministry of Agriculture, Fisheries and Food, 1973).

The amount absorbed daily by the human body through the digestive and respiratory routes varies between 40 and 60 μg for the non-polluted regions whereas in the polluted zones it may be ten times higher (Krofp et al., 1968; Morgan, 1969; Rautu and Sporn, 1970; Friberg et al., 1973). The amount in the body increases with age and can attain 40-60 mg in people aged 50-60 years living in contaminated areas; the highest concentration is attained in the liver and kidneys, which contain about one-third of the total body burden. In man the biological half-time of this metal, which is approximately 16 years, accounts for the accumulation and increase of the amount in the body with advancing age (Perry et al., 1961; Gu'l'ko, 1969; Curry and Knott, 1970; Sayato et al., 1971; Tsuchiya and Sugita, 1971; Shaikh and Lucis, 1972; Suzuki et al., 1972; Tsuchiya et al., 1972; Webb, 1972; Friberg et al., 1973).

*Deceased.

Received for publication 9 February 1976
Accepted for publication 10 August 1977

British Journal of Industrial Medicine, 1978, 35, 154-160
ADVERSE EFFECTS

Although cases of acute poisoning 0-5-3 h after the ingestion of doses as low as 15-20 mg have been described, the effects of cadmium are mostly chronic and become apparent through their action on several enzymes involved in metabolic processes. On the one hand, cadmium has a marked affinity for the thiol group (Fuwa, 1971; Nordberg, 1972); on the other hand, cadmium increases the organism’s needs for zinc, iron and copper (Gunn et al., 1961, 1962; Hill et al., 1963; Supplee, 1963; Hennig and Anke, 1964; Banis et al., 1969; Anke et al., 1971; Chueca et al., 1971; Pond and Walker, 1972). By its affinity for thiol and interactions with certain trace elements playing the part of coenzymes cadmium directly or indirectly alters the activity of carbonic anhydrase, acid and alkaline phosphatase, lactic and succinic dehydrogenase, δ-amino-levulinic acid dehydrase, and adenosine phosphatase. Increasing the supply of the competing trace elements (Zn, Fe, Cu), considerably reduces the adverse effects of cadmium, and some of its effects are eliminated (Cross et al., 1970; Hodgen et al., 1970; Adunts et al., 1972; Anca, 1973; Wada et al., 1973; Sansi and Pond, 1974).

By depressing the activity of several enzymes and by interfering with the action of some trace elements, cadmium brings about both generalised disorders (hyperglycaemia, dyslipidaemia, hypoproteinaemia, and retarded growth, for example) and also morphological changes in several tissues or organs, leading to nephropathy, hepatopathy, anaemia, cardiovascular disease, osteopathy and gonadal lesions. It is therefore considered to be a factor that may increase morbidity and mortality, and reduce longevity (Kazantzis et al., 1963; Piscator, 1963; Axelsson and Piscator, 1966a, b; Carroll, 1966; Schroeder, 1967; Tsuchiya, 1967; Lilis et al., 1968; Fukuyama and Kubota, 1970; Gunn, 1970; Pujol et al., 1970; Anke et al., 1971; Flick et al., 1971; Mertz et al., 1972; Nordberg and Piscator, 1972; Perry, 1972; Itokawa et al., 1973.).

Pollution of the environment can be prevented only by organisation and technical measures, but industrialisation inevitably entails some dispersion of chemical agents into the environment. Because the result of the action of a chemical on the body depends not only on its toxicity but also on the host’s reaction, which is influenced to a great extent by his state of nutrition, we have studied the role of diet in the body’s resistance to such toxicants (Gontzea et al., 1964; Gontzea et al., 1967; Gontzea and Sutzescu, 1967).

As chronic cadmium toxicity causes impairment of the activity of several enzymes and alters the available nitrogenous material, we have studied the quantity and quality of protein intake (Smith et al., 1961; Piscator, 1962, 1966; Gunn et al., 1966; Tsuchiya, 1967; Fuwa, 1971; Goyer et al., 1972; Nordberg, 1972; Friberg et al., 1973).

Materials and methods

Ninety white male young rats of the Wistar strain, and of similar age and weight (180-190 g) were fed with a semi-synthetic mixture containing casein, starch and sunflower oil, to which were added vitamins and mineral salts in optimal ratios. The two variables were the amount (17.87 g% in the normal protein diet, and 8.85 g% in the low protein diet) and the quality of the nitrogenous material. As the amino acid with the greatest affinity for cadmium is cysteine and the thioamino acids represent the limiting factor of casein, the variation of quality was achieved by isonitrogenous substitution in the low protein diet of 0.5 g% DL-methionine. Food and water were given ad libitum. In order that, at the start of cadmium administration, the animals’ state of nutrition should be comparable, they were fed for 10 days on a normal protein diet. They were subsequently randomly allocated to three groups corresponding to the three diets (normal protein, low protein with methionine, or low protein without the addition of methionine.)

The animals in each dietary group were further divided into two subgroups, one of which was treated with cadmium, the other subgroup acting as a control. The toxicant was added as cadmium chloride dissolved in normal saline in a concentration of 30 μg cadmium/0·1 ml. To maintain the isotonicity of the solution the concentration of sodium chloride in the normal salt solution was equimortally reduced. In order to know exactly how much metal entered the metabolism, the solution was administered subcutaneously, to give 0·3 mg Cd/kg body weight (65-70 times less than the LD50), six times a week for 13 weeks. So that the effects of neuroendocrine stress caused by the injection per se could be ruled out, the control animals were injected subcutaneously with the same amount and with the same frequency as were the test animals, using the vehicle only (0·8 g% NaCl).

During the experiment the body weights were recorded weekly, and haematology and blood sugar were monitored monthly. At the end of the period, after all these examinations had been repeated, the animals were anaesthetised and killed by withdrawal of blood from the heart until it stopped beating, and by excision of the liver. The concentrations of cholesterol and protein in serum were measured, as was the protein content of liver homogenate and the activity of the enzymes xanthine oxidase, succinic dehydrogenase and aldolase.
Table 1 The effects of protein supply and cadmium on body weight and blood chemistry

<table>
<thead>
<tr>
<th>Group No.</th>
<th>Diet* Sub-group**</th>
<th>Body weight (g)</th>
<th>Erythrocyte count (million)</th>
<th>Haemoglobin (g/100 ml)</th>
<th>Serum constituents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Initial</td>
<td>Final</td>
<td>Initial</td>
<td>Final</td>
</tr>
<tr>
<td>I</td>
<td>Np</td>
<td>352 ± 9.97</td>
<td>164 ± 6.80</td>
<td>130 ± 8.27</td>
<td>93.9 ± 6.88</td>
</tr>
<tr>
<td>II</td>
<td>Np T</td>
<td>294 ± 9.59</td>
<td>106 ± 8.56</td>
<td>115 ± 11.27</td>
<td>8.92 ± 15.44</td>
</tr>
<tr>
<td>III</td>
<td>Lp</td>
<td>317 ± 9.60</td>
<td>129 ± 8.09</td>
<td>13.7 ± 9.3</td>
<td>9.01 ± 10.9</td>
</tr>
<tr>
<td>IV</td>
<td>Lp T</td>
<td>212 ± 7.60</td>
<td>25 ± 8.60</td>
<td>13.7 ± 9.3</td>
<td>9.01 ± 10.9</td>
</tr>
<tr>
<td>V</td>
<td>Lp C</td>
<td>317 ± 9.60</td>
<td>129 ± 8.09</td>
<td>13.7 ± 9.3</td>
<td>9.01 ± 10.9</td>
</tr>
<tr>
<td>VI</td>
<td>Lp T</td>
<td>212 ± 7.60</td>
<td>25 ± 8.60</td>
<td>13.7 ± 9.3</td>
<td>9.01 ± 10.9</td>
</tr>
</tbody>
</table>

*Significance of difference \(P \) between groups:
- I-II <0.001
- I-III <0.003
- II-IV <0.001
- II-VI <0.001
- III-IV <0.001
- IV-VI <0.001
- V-VI <0.001

**Sub-group: C = Control; T = Treated with a subcutaneous injection of cadmium chloride

Table 2 The effects of protein supply and cadmium on the liver and liver enzymes

<table>
<thead>
<tr>
<th>Group No.</th>
<th>Diet* Sub-group**</th>
<th>Liver weight (g/100 g body weight)</th>
<th>Liver proteins (mg/g wet liver)</th>
<th>Xanthine oxidase (micromols xanthine consumed in liver/h)</th>
<th>Aldolase (µMDFP)/g</th>
<th>Succinic dehydrogenase (µmol formazane/mg/15 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Np</td>
<td>297 ± 0.039</td>
<td>168 ± 4</td>
<td>10.4 ± 1.02</td>
<td>64.7 ± 22.66</td>
<td>1.85 ± 0.99</td>
</tr>
<tr>
<td>II</td>
<td>Np T</td>
<td>398 ± 0.078</td>
<td>169 ± 4</td>
<td>12.7 ± 1.18</td>
<td>58.9 ± 33.86</td>
<td>2.43 ± 0.16</td>
</tr>
<tr>
<td>III</td>
<td>Lp</td>
<td>302 ± 0.067</td>
<td>154 ± 8</td>
<td>5.0 ± 0.51</td>
<td>3.2 ± 0.69</td>
<td>1.15 ± 0.13</td>
</tr>
<tr>
<td>IV</td>
<td>Lp T</td>
<td>401 ± 0.104</td>
<td>160 ± 60</td>
<td>8.6 ± 0.80</td>
<td>5.6 ± 0.54</td>
<td>2.11 ± 0.13</td>
</tr>
<tr>
<td>V</td>
<td>Lp C</td>
<td>312 ± 0.061</td>
<td>194 ± 3</td>
<td>10.5 ± 1.06</td>
<td>7.5 ± 0.87</td>
<td>1.93 ± 0.07</td>
</tr>
<tr>
<td>VI</td>
<td>Lp T</td>
<td>430 ± 0.129</td>
<td>178 ± 6</td>
<td>10.6 ± 0.91</td>
<td>7.2 ± 0.56</td>
<td>2.08 ± 0.09</td>
</tr>
</tbody>
</table>

*Significance of difference \(P \) between groups:
- I-II <0.001
- I-III <0.001
- II-IV <0.001
- II-VI <0.001
- III-V <0.001
- IV-VI <0.001
- V-VI <0.001

**Sub-group: As in Table 1

Results and discussion

The average values and standard errors of each group are shown in Tables 1 and 2. The results were interpreted by comparison both between groups and between pairs, and only those differences which were statistically significant at \(P < 0.05 \) were taken into account.

Body weight

Irrespective of the diet of the animals injected with cadmium, their weight increase was significantly less than that of the control groups, demonstrating the effects of the doses administered (Table 1 and Figure 1). In the pairs with a normal protein diet the difference between the dosed group and the control group was 30%, whereas in the low protein pair the weight increase was five times smaller in the cadmium-treated animals (+13.4 against 68.6 g). The improvement in quality of the nitro-genous material in the low protein diet, following the addition of methionine, allowed the animals to achieve the same weight increase (+56%) as the animals treated with the same dose of cad-
The effect of body protein supply on resistance to cadmium

Diet:
- **Np** = Normal protein (17.87 g%)
- **Lp** = Low protein (8.85 g%)
- **Lpm** = Low protein + methionine (0.5 g%)

Fig. 1 Influence of diet on increase in body weight (as percentages of initial values) after subcutaneous injection of 0.3 mg Cd/kg body weight.

Fig. 2 The role of protein supply on the effect of cadmium (0.3 mg/kg body weight) on erythrocytes and haemoglobin levels.

BLOOD
Cadmium depressed both haematopoiesis and haemoglobinogenesis (Table 1; Figure 2), to a degree which was influenced both by the quantity and the quality of the protein supply. Comparison of the average values of the treated groups in the three pairs shows that, whereas in animals given a normal protein diet, the number of erythrocytes fell by 19% and the amount of haemoglobin by 11%, in the low protein group the reduction was 29% for the erythrocytes and 38% for haemoglobin. The isonitrogenous incorporation of methionine into the low protein diet reduced the haematological effect of cadmium to -21 and -26%, but the difference was significant (p < 0.001) only for haemoglobin.

CHANGES IN BLOOD PROTEIN, GLUCOSE AND CHOLESTEROL LEVELS
In cadmium-treated animals which were fed on the normal protein diet, the average protein content was 8.92 g% against 8.21 g% in those fed on the low protein diet (p < 0.001) (Table 1). The addition of methionine to the diet of this group significantly (p < 0.001) reduced the hypoproteinaemic effect of cadmium, so that the difference in comparison with the normal protein diet was much less (p < 0.05).
Leaving aside the pair fed on the low protein diet fortified with methionine, in which cadmium lowered the mean value of glucose (p < 0.05), in the other two pairs the administration of the same amount of cadmium caused a significant increase (p < 0.001) in the blood glucose concentration (by 33–35%). The hyperglycaemic action of cadmium was not influenced by the protein supply. Irrespective of the diet, the mean level of cholesterol in animals of the groups treated with cadmium was lower than that in the control groups, but the significance of the differences is relatively reduced (p = 0.06 − p < 0.01), being only slightly influenced by the diet, with the highest value recorded for the low protein pair.

THE EFFECTS OF CADMIUM ON THE LIVER AND LIVER ENZYMES

Regardless of the quantity and quality of protein in the diet, cadmium administration increased (p < 0.001) the weight of liver/100 g body weight (Table 2). In the control animals, adding 0.5 g methionine to the low protein diet without changing its total nitrogen content, significantly increased (p < 0.001) the protein concentration in the liver, both by comparison with the normal protein control group and with the group fed on the low protein diet. As expected, in the animals of the control group the low protein diet significantly lowered (p < 0.001) the xanthine oxidase and succinic dehydrogenase activity. The addition of 0.5 g% DL-methionine countered this effect, so that the differences with regard to the normal protein group became non-significant, and aldolase activity was increased (p < 0.05).

The fact that the quantity and quality of the protein supply significantly diminishes the effect of cadmium on weight increase, haematopoiesis and protein content, shows that poisoning by this metal is particularly detrimental either to the amino acids available in the metabolic pool, or to their anabolic use. These effects may be caused by loss of nitrogenous material (proteinuria, hyperaminoaciduria), and particularly by inactivation of the thiol groups and by binding of a part of the amino acids in the form of metallothionein, which plays an important part in the elimination of cadmium from the body.

References

The effect of body protein supply on resistance to cadmium

Särtryck ur Nordisk Hygienisk Tidskrift, Tokyo, 53, 105-110.

The effect of body protein supply on resistance to cadmium.

I Gontzea and F Popescu

doi: 10.1136/oem.35.2.154

Updated information and services can be found at:
http://oem.bmj.com/content/35/2/154

These include:

Email alerting service
Receive free email alerts when new articles cite this article.
Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/