Article Text

PDF

Mineral fibres: correlation between oxidising surface activity and DNA base hydroxylation.
  1. A Nejjari,
  2. J Fournier,
  3. H Pezerat,
  4. P Leanderson
  1. Laboratoire de Réactivité de Surface et Structure, Université P et M Curie, CNRS, URA 1106, Paris, France.

    Abstract

    In relation to their potential genotoxic properties, the ability of inorganic particles to induce activated species of oxygen with strong oxidative properties can be studied by various methods. In this study the oxidative surface properties of 10 different natural and synthetic mineral fibres were investigated by: (1) an electron paramagnetic resonance technique in which formate was used to trap oxidative species; and (2) a high performance liquid chromatography (HPLC) based method in which deoxyguanosine was used as a trapping agent and the formation of 8-hydroxy-deoxyguanosine (8 OHdG) was analysed. Ground iron-containing fibres such as crocidolite and amosite were the most reactive, whereas fibres without iron--for example, ceramic fibres, xonotlite, and Tismo L--were completely inactive. A good correlation was found when the results from the two methods were compared (r = 0.86).

    Statistics from Altmetric.com

    Request permissions

    If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.